2024 Artificial Intelligence and Machine Learning Principal Investigator Exchange Meeting Presentations

December 4, 2024

Principal Inv.

Institution

R&D Area

Presentation Title

Speaker

  DOE NP   Introductory Remarks Mantica
  DOE NP   NP supported AI/ML Farkhondeh
Liu, Ming Xiong LANL Detectors Intelligent Experiments Through Real‐time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX Liu
Jacobs, Peter LBNL Experiment AI New approaches to Bayesian uncertainty quantification for
Nuclear Science
Jacobs
Carpenter, Michael ANL Experiment, LE Modern Data Analytics for the Large GammaRay
Spectrometers: GRETINA/GRETA and Gammasphere via
Machine Learning and Optimization
Carpenter
Redpath, Thomas VSU  Experiment, LE  Neural network classifier for analyzing measurements of fast
neutrons for invariant mass spectroscopy
Redpath
Liuti, Simonetta UVA Theory, LQCD  EXCLAIM - EXCLusives via Artificial Intelligence and Machine
learning
Liuti
Lee, Dean MSU Theory ML STREAMLINE Collaboration: Machine Learning for Nuclear
Many‐Body Systems
Lee
Ostroumov, Peter
Scheinker, Alexander
MSU Accelerator  Online Machine Autonomous Learning Tuning of the FRIB Accelerator Using Machine Learning Ostroumov
Mustapha, Brahim ANL Accelerator Accelerator Use of artificial intelligence to optimize accelerator
operations and improve machine performance
Mustapha/Santia

December 5, 2024

Principal Inv.

Institution

R&D Area

Presentation Title

Speaker

Crawford, Heather LBNL Accelerator Machine Learning Optimization: VENUS & GRETA Crawford 
Hoffman, Calem ANL-ATLAS Accelerator Autonomous Optimization of the Secondary Beam Production and Delivery at the ATLAS In-Flight Facility Mustapha 
Tennant, Christopher TJNAF Accelerators AI for Improved SRF Operation at CEBAF Tennnant 
Gruszko, Julieta UNC Detector, FS Interpretable Machine Learning for Germanium-Based Neutrinoless Double Beta Decay Searches Gruszko 
Fanelli, Cristiano W&M Detectors  A Scalable and Distributed AI‐assisted detector design for the EIC Fanelli  Fanelli
Lawrence, David TJNAF Detectors A.I. Assisted Experiment Control and Calibration Lawrence
Hoffstaetter, Georg BNL/Cornell Accelerator Beam polarization increase in the BNL hadron injectors through physics‐informed Bayesian Learning Hoffstaetter
Lawrence, David TJNAF Polarization AI/ML Optimized Polarization Lawrence
Tennant, Christopher TJNAF Accelerator Graph Learning for Efficient and Explainable Operation ofParticle Accelerators Tennant
Closing Remarks