Crystal with a Twist: Researchers Grow Spiraling New Material

Researchers create spiraling inorganic crystals that could hold unique properties.

A black and white of a helix.
Image courtesy of UC Berkeley
UC Berkeley and Berkeley Lab researchers created a new crystal built of a spiraling stack of atomically thin germanium sulfide sheets.

The Science

With a simple twist of the fingers, one can create a beautiful spiral from a deck of cards. In the same way, scientists have created new inorganic crystals made of stacks of atomically thin sheets. These stacks unexpectedly spiral like a nanoscale card deck. Their surprising structures may yield unique optical, electronic and thermal properties. These properties may even include superconductivity, the ability to conduct electricity without loss. These crystals in the shape of a helix are made of stacked layers of germanium sulfide. This is a semiconductor material that, like graphene, readily forms sheets that are only a few atoms thick. Such “nanosheets” are also called “2D materials.”

The Impact

This is the first time that scientists have made 2D materials that form a continuously twisting shape in a structure that is thousands layers thick. The spiral structures could hold unique properties that aren’t observed in regularly stacked materials. Scientists could likely use this technique to grow layers of other materials that form atomically thin layers.


To create the twisted structures, the team took advantage of a crystal defect called a screw dislocation, a “mistake” in the orderly crystal structure that gives it a bit of a twisting force. This “Eshelby Twist”, named after scientist John D. Eshelby, has been used by others to create nanowires that spiral like pine trees. But this study is the first time the Eshelby Twist has been used to make crystals built of stacked 2D layers of an atomically thin semiconductor.

In a major discovery last year, scientists reported that graphene becomes superconductive when two atomically thin sheets of the material are stacked and twisted at what’s called a “magic angle.” While other researchers have since succeeded at stacking two layers at a time, this new work provides a recipe for synthesizing stacked structures that are hundreds of thousands or even millions of layers thick in a continuously twisting fashion.

By adjusting the material synthesis conditions and length, the researchers could change the angle between the layers, creating a twisted structure that is tight, like a spring, or loose, like an uncoiled Slinky.

Scientists performed X-ray analyses for the study at the Advanced Light Source and measured the crystal’s twist angles at the Molecular Foundry, both DOE Office of Science user facilities.


Jie Yao
Department of Materials Science and Engineering, University of California, Berkeley
Materials Sciences Division, Berkeley Lab


Y.L. and J.Y. are supported by the Samsung Advanced Institute of Technology. Work at the Molecular Foundry and the Advanced Light Source was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy. H.S. and D.C.C. are supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering. within the Electronic Materials Program (KC1201). This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility. We thank C. So, C. Song, X. Wang, S. Yan, K. Bustillo and C. V. Stan for help with the experiments.


Y. Liu, S. Kim, H. Sun, F. Yang, Z. Fang, N. Tamura, R. Zhang, X. Song, J. Wen, B.Z. Xu, M. Wang, S. Lin, Q. Yu, K.B. Tom, T. Deng, J. Turner, E. Chan, D. Jin, R. O. Ritchie, A.M. Minor, D.C.Chrzan, M.C.Scott, J. Yao, “Helical van der Waals crystals with discretized Eshelby twistNature. 570, 358-362 (2019). [DOI: 10.1038/s41586-019-1308-y ]

Related Links

Crystal with a Twist: Scientists Grow Spiraling New Material, UC Berkeley press release

Highlight Categories

Program: BES , MSE , SUF

Performer: University , SC User Facilities , BES User Facilities , CNM , Foundry