Imaging Probe Printed onto Tip of Optical Fiber
The Molecular Foundry and aBeam Technologies bring mass fabrication to nano-optical devices.
The Molecular Foundry and aBeam Technologies bring mass fabrication to nano-optical devices.
In hybrid materials, “hot” electrons live longer, producing electricity, not heat, for solar cells.
Defects in liquid crystals act as guides in tiny oceans, directing particle traffic.
Wide metastable composition ranges are possible in alloys of semiconductors with different crystal structures.
New binding molecules formed a protective layer after charging and discharging, making a promising battery component more stable.
Built from the bottom up, nanoribbons can be semiconducting, enabling broad electronic applications.
Direct writing of pure-metal structures may advance novel light sources, sensors and information storage technologies.
Scientists reveal structural, chemical changes as nickel-cobalt particles donate electrons, vital for making better batteries, fuel cells.
Scientists combine biology, nanotechnology into composites that light up upon chemical stimulation.
Scientists create widely controllable ultrathin optical components that allow virtual objects to be projected in real environments.
New materials could turn water into the fuel of the future.
Confined within tiny carbon nanotubes, extremely cold water molecules line up in a highly ordered chain.