Discovering Secrets of Superfluids
Observed atomic dynamics helps explain bizarre flow without friction that has been puzzling scientists for decades.
Observed atomic dynamics helps explain bizarre flow without friction that has been puzzling scientists for decades.
Electrons are forced to the edge of the road on a thin sheet of tungsten ditelluride.
Real-time imaging shows how hydrogen causes oxygen to leave a buried surface, transforming an oxide into a metal.
Simply applying a small voltage dramatically changes the atomic structure, vital to creating materials for advanced computer memory.
A new x-ray beam technique tracks atomic-level changes under real-world operating conditions.
Measured strong coupling of vibrations and electrons could lead to controlled magnetism and electronic properties.
Focused x-ray beam revealed structural changes from laser heating, pinning down elusive melting point.
For one of the strongest known materials, calculations clarify a long-standing debate about how atoms pack together.
Theory predicts that bending a film will control spin direction and create a spin current for next-generation electronics.
Cage-like molecules with internal chemical hooks remove three times more hazardous radioactive iodine compounds than current methods.
Lasers reveal a new state of matter—the first three-dimensional quantum liquid crystal.
Unexpectedly, a little chemical substitution stabilizes unusual magnetic phase of vortexes called skyrmions.