Improved Spin and Density Correlation Simulations Give Researchers Clearer Insights on Neutron Stars
New lattice simulations compute the spin and density correlations in neutron matter that affect neutrino heating during core-collapse supernovae.
New lattice simulations compute the spin and density correlations in neutron matter that affect neutrino heating during core-collapse supernovae.
New theory-based approach gives access to quarks’ tiny transverse motion within protons.
Nuclear theorists reveal mass distribution within the pion and the proton from first principle numerical calculations.
Scientists find evidence of superfluidity in low-density neutron matter by using highly flexible neural-network representations of quantum wave functions.
The Facility for Rare Isotope Beams enables a high-precision mass measurement at the edge of the nuclear chart.
An enhanced topographic analysis toolkit for forecasting and improving particle accelerator performance is helping scientists build better accelerators.
Solving quantum many-body problems with wavefunction matching.
Recent advances enable simulations near a possible critical endpoint of the transition between the quark gluon plasma and a hadron liquid.
New nuclear physics measurements shed light on the synthesis of heavy elements in stars.
The Facility for Rare Isotope Beams opens a new research avenue and observes three new rare isotopes.
Nuclear physicists shatter a nearly 30-year-old record for the measurement of parallel spin within an electron beam.
Scientists have detected nuclear decay by observing the recoil of a dust-sized particle when a single nucleus within it decays.
Signup for the Office of Science’s GovDelivery email service, and check the box for the Nuclear Physics Program in your subscriber preferences.
Subscribe