Adjusting the Dance Tunes the Melt
Understanding Ions’ Subtle Molecular-Level Interactions Allows Scientists to Tune the Melting Point
Understanding Ions’ Subtle Molecular-Level Interactions Allows Scientists to Tune the Melting Point
Neutron and X-ray scattering shed light on exotic states that determine the electronic properties of materials.
New electronic ring-containing polymers enable unexpected movement of energy along the backbone connecting the polymer and within each ring.
Metal organic framework materials turn fluorescent light signals on or off in the presence of guest molecules.
Computational design of bundled peptide building blocks that can be precisely linked provides new ways to create customized polymers.
A new quantitative understanding of how, at what distance, and in what shape zinc oxide nanoparticles come together while separated by liquid.
A new quantitative understanding of how, at what distance, and in what shape zinc oxide nanoparticles come together while separated by liquid.
Crystals grown from layers of atoms arrange themselves on semiconductor surfaces to add new capabilities.
Neutron scattering and isotopic substitution techniques reveal how to block vibrations that could leak heat from a photovoltaic cell.
Neutron scattering reveals a new way for magnetic oscillations to stick together.
Neutron and X-ray experiments illuminate the magnetic transitions in hexagonal iron sulfide that transform it from a conductor to an insulator.
Swarms of synchronized active spinning particles exhibit complex collective behavior, ranging from liquid-like states to dynamic crystals.