Lying in Wait: MOF Are Traps for Toxic Gases
Researchers used neutrons to study porous metal materials called MOFs that trap toxic gases that are harmful to the environment and human health.
Researchers used neutrons to study porous metal materials called MOFs that trap toxic gases that are harmful to the environment and human health.
Ultrafast X-ray imaging created with new technology offers insights into improving the energy efficiency of combustion engines.
Electron transfer between atomically thin materials triggers the ultrafast release of heat.
Scientists chart a path to sub-femtosecond hard X-ray Free-Electron-Laser pulses powered by compact plasma-based accelerators.
Recent advances enable simulations near a possible critical endpoint of the transition between the quark gluon plasma and a hadron liquid.
New nuclear physics measurements shed light on the synthesis of heavy elements in stars.
The Facility for Rare Isotope Beams opens a new research avenue and observes three new rare isotopes.
Nuclear physicists shatter a nearly 30-year-old record for the measurement of parallel spin within an electron beam.
Scientists have detected nuclear decay by observing the recoil of a dust-sized particle when a single nucleus within it decays.
High-surface area silicon improves light-driven reactions of carbon dioxide.
Scientists learn how to manipulate quantum properties in graphene to create resistance-free, electricity channels for loss-free future electronics.
Synchrotron X-ray spectroscopy allows atom-level examination of iron and terbium atoms.