Neutron Star Mergers Create Heavy Elements
Gravitational wave observations combined with optical and gamma-ray data confirm earlier predictions, offer insights into how the galaxy produces lead, mercury, and other elements.
Gravitational wave observations combined with optical and gamma-ray data confirm earlier predictions, offer insights into how the galaxy produces lead, mercury, and other elements.
Real-time imaging shows how hydrogen causes oxygen to leave a buried surface, transforming an oxide into a metal.
Simply applying a small voltage dramatically changes the atomic structure, vital to creating materials for advanced computer memory.
A new x-ray beam technique tracks atomic-level changes under real-world operating conditions.
Measured strong coupling of vibrations and electrons could lead to controlled magnetism and electronic properties.
Focused x-ray beam revealed structural changes from laser heating, pinning down elusive melting point.
Theory predicts that bending a film will control spin direction and create a spin current for next-generation electronics.
Cage-like molecules with internal chemical hooks remove three times more hazardous radioactive iodine compounds than current methods.
Lasers reveal a new state of matter—the first three-dimensional quantum liquid crystal.
Unexpectedly, a little chemical substitution stabilizes unusual magnetic phase of vortexes called skyrmions.
New, unexpected paradigm discovered: Disorder may actually promote an exotic quantum state, with potential for ultrafast computing.
Soil microbes work as both decomposers and synthesizers of carbon compounds in soil, offering new answers with impacts to crops and eco-health.