Creating Quiet Cables for Rare Physics Events
Researchers design ultra-low radiation cables to reduce background noise for highly sensitive nuclear decay and dark matter detectors.
Researchers design ultra-low radiation cables to reduce background noise for highly sensitive nuclear decay and dark matter detectors.
Finite geometry reveals fundamental properties of charged quantum systems.
The floating block method provides the tools to compute how quantum states overlap and how to build fast and accurate emulators of those systems.
An almost-bound isotope of oxygen undergoes four-neutron decay that challenges theory.
Settling a long-standing question, scientists have proven that antihydrogen falls downward in a first-ever direct experiment.
Plasmas with negative triangularity show reduced gradients that develop into instabilities, including under conditions relevant to fusion power plants.
Experiments find increased temperatures and carbon dioxide rapidly altered peatland carbon stocks, highlighting peatlands’ vulnerability to climate change.
AI reveals relationships between weather systems and cloud physics.
Voronoi tessellation meshes focus on sea ice areas of interest and reduce computer resource needs.
The first results from the MAJORANA experiment dramatically improve current limits on this rare isotope’s decay.
Nitrogen-9 has only two neutrons to its seven protons and decays to an alpha particle by emitting five of its protons in stages.
Bayesian statistical methods help improve the predictability of complex computational models in experimentally unknown research.