Probing Neutron Star Crusts with Artificial Neural Networks
Scientists find evidence of superfluidity in low-density neutron matter by using highly flexible neural-network representations of quantum wave functions.
Scientists find evidence of superfluidity in low-density neutron matter by using highly flexible neural-network representations of quantum wave functions.
The first measurement of ion temperature in magnetic islands identified a steep gradient, providing insights for improving plasma confinement in tokamaks.
Ultrafast X-ray experiments provide direct evidence that interaction of light with a hydrocarbon molecule produces strained molecular rings.
Emulating the edge of chaos of axons enables a metal wire to overcome its resistance without cooling, thereby amplifying signals flowing inside of it.
Neutron experiments revealed microscopic details about a special 3D-printed superalloy that could potentially reduce component costs.
Scientists use gene editing to create a yellow-seeded camelina that may boost oil yield.
An enhanced topographic analysis toolkit for forecasting and improving particle accelerator performance is helping scientists build better accelerators.
An enhanced topographic analysis toolkit for forecasting and improving particle accelerator performance is helping scientists build better accelerators.
Layers of a surface-conducting material, sandwiched between layers of a magnetic insulator, could lead to more powerful, energy-efficient electronics.
Researchers used neutrons to study porous metal materials called MOFs that trap toxic gases that are harmful to the environment and human health.
Ultrafast X-ray imaging created with new technology offers insights into improving the energy efficiency of combustion engines.
Electron transfer between atomically thin materials triggers the ultrafast release of heat.