
Testing the Toughness of Microbial Cell Walls
Some cells stand firm against techniques to extract the biological material inside, while others don’t stand a chance.
Some cells stand firm against techniques to extract the biological material inside, while others don’t stand a chance.
Scientists use supercomputers to determine how reliably a popular Earth system model represents precipitation regionally and globally.
Even a single species of bacteria can positively affect soils and plants, improving and even enabling agriculture in semi-arid areas.
First-of-a-kind study advances understanding of microbial and viral communities involved in biomass breakdown.
Scientists reveal the importance of an amino acid that supplies energy and protection for microbial communities deep underground.
An atomic view of how toxic uranium binds to iron minerals in the environment enables better predictions of its behavior.
A pioneering study offers an easier approach to study how microbes work and could help scientists advance models of the cycling of elements and nutrients in frequently flooded soils.
Scientists develop a molecular map of metabolic products of bacteria in root nodules to aid sustainable agriculture.
New technique enables more efficient and precise estimates of trends in ozone and other atmospheric constituents within selected geographical regions and timeframes.
Global data set shows monthly water use by irrigation, manufacturing, and other uses, helping researchers to analyze water use by region and season.
Researchers link root water uptake to root traits and assess (poor) performance of common models.
Predictions of the direct impacts of greenhouse gases must account for local temperature and humidity conditions.