Raspberry Pis
Computational Thinking and Cyberscience

Carolyn Lauzon – Department of Energy, Office of Science
Ti Leggett – Argonne Leadership Computing Facility
Choose your own adventure

Introduction - Computational Thinking and Raspberry Pi 3 – 21
• Continuation of Introduction

Computing Tracks
• Demo - Tiny Titan Supercomputing Demo
• Talk - History and Future of Supercomputing
• Demo – Machine Learning on an Rpi

CyberScience
• Hacking Demo 1 - DDOS demo
• Hacking Demo 2 - ARP Poisoning
• Alt – practice run for middle schoolers
Computational Thinking & Raspberry Pis

Discovering Problem Solving Using Computer Science

- Ti Leggett – Deputy Project Director & Deputy Director of Operations
- Argonne Leadership Computing Facility (ALCF)
Why computational thinking?
Problem Solving by Pattern Matching

• Critical skill, not just in computer science
• Break the problem down
 • What are you trying to solve?
 • What do you know/have?
 • Do you know what you don’t know?
 • How do you find out what you don’t know?
 • Do you notice any patterns?
 • After solution, can you simplify/optimize the solution further?
Examples

- Helping my son with math homework
- Assembling a wheelbarrow
- Building a house in Minecraft
My Story
Tools to help teach computational thinking
Software Resources

• MIT Scratch
 • http://scratch.mit.edu
Software Resources

• MIT Scratch
 • https://scratch.mit.edu

• Code.org
 • https://code.org
Software Resources

• MIT Scratch
 • https://scratch.mit.edu

• Code.org
 • https://code.org

• Alice
 • https://www.alice.org
What’s the difference?

• MIT Scratch
 • More open ended
 • Community based
• Code.org
 • Aligned with Common Core
 • Step by Step
 • Hour of Code
• Alice
 • Focuses more on visual and interactive
 • Not as widely used as other two
Hardware Resources

• Lab computers, laptops, & tablets
Hardware Resources

• Lab computers, laptops, & tablets
• Arduinos
 • https://www.arduino.cc
Hardware Resources

• Lab computers, laptops, & tablets
• Arduinos
 • https://www.arduino.cc
• BeagleBone
 • https://beagleboard.org/bone
Hardware Resources

- Lab computers, laptops, & tablets
- Arduinos
 - https://www.arduino.cc
- BeagleBone
 - https://beagleboard.org/bone
- PINE64
 - https://www.pine64.org
Hardware Resources

• Lab computers, laptops, & tablets

• Arduinos
 • https://www.arduino.cc

• BeagleBone
 • https://beagleboard.org/bone

• PINE64
 • https://www.pine64.org

• Raspberry Pi
 • https://www.raspberry.org
What’s the difference?

• **BeagleBone, PINE64, & Raspberry Pi**
 • Full fledged computers
 • Run an OS
 • Programmed with many different languages
 • More general purpose
 • More easily use networks
 • Large amount of RAM

• **Arduino**
 • Microcontroller
 • No OS, what you “flash” on it is the only thing that runs
 • Great for “real time” applications
 • Low power & can be tiny

• **All have General Purpose I/O (GPIO)**
 • Sensors, motors, relays
Why the Raspberry Pi?

• It’s cheap: $35
• Works with common components
 • TV, keyboard, mouse, wireless, Bluetooth
• Updated versions regularly
 • Faster, more RAM, better I/O, etc.
• Flexible
 • Runs Windows & Linux
• Huge user community
 • Many existing projects and examples
• MagPi
 • Free to download monthly magazine
• Lots of accessories
 • Cameras, LCDs, sensors, cases
Introduction to the Raspberry Pi
GPIO Pins
USB Ports
Ethernet
Stereo Audio
HDMI
Micro USB Power
Programmable LEDs

Model

External Display Connector

Processor & GPU

Camera Connector
What do you need to get started?

- HDMI monitor or TV
- HDMI cable
- USB keyboard and mouse
- 8GB+ micro SD card
- SD card reader (your laptop may have one built in)
- OS image
- Software to write to the SD card
 - https://etcher.io/
- Micro USB power adapter
 - Many cell phone chargers will work
 - Make sure it is at least rated for 2.5A output
 - If in doubt, buy a UL rated one for a Raspberry Pi 3
Choose your own adventure

Computational Thinking and Raspberry Pi Continued

Computing Tracks
• Demo - Tiny Titan Supercomputing Demo
• Talk - History and Future of Supercomputing
• Demo – Machine Learning on an Rpi

Cyberscience
• Hacking Demo 1 - DDOS demo
• Hacking Demo 2 - ARP Poisoning
• Alt – practice run for middle schoolers
Acknowledgement

This presentation used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy, Office of Science, under contract number DE-AC02-06CH11357.