SBIR / STTR FISCAL YEAR 2009 PHASE II AWARDS
By Topic

TOPICS:

- Instrumentation for Neutron Scattering, Electron Microscopy, and Scanning Probe Microscopy
- Technology to Support BES User Facilities
- Accelerator Technologies for Present and Future Accelerator Facilities
- Advanced Coal Research
- Materials for Advanced Nuclear Energy Systems
- Solid State Electrolyte Development for Advanced Energy Storage Devices
- Materials for Advanced Cooling Applications
- Solid-State Lighting
- Catalysis
- Chemical Reactions and Separation Processes for Biorefinery Applications
- Technologies Related to Energy Storage for Hybrid and Plug-in Hybrid Electric Vehicles
- Nanotechnology
- Alternative Feedstocks
- Atmospheric Measurement Technology
- Genomes-To-Life (GTL) and Related Biotechnologies
- Carbon Cycle Measurements of the Atmosphere and the Biosphere
- Technologies for Subsurface Characterization and Monitoring
- Medical Sciences
- Wind Energy Technology Development
- Traditional Energy Efficient Lighting Technologies
- Geothermal Technologies
- Hydrogen, Fuel Cells, and infrastructure Technologies
- Petroleum Industry Technologies
- Solar Energy
- Vehicle Technologies
- Production of Biofuels from Biomass
- Natural Disaster Reduction Through Technology
- High Temperature Superconductivity
- Advanced Technologies and Materials for Fusion Energy Systems
- Fusion Science and Technology
- High Energy Density Physics for Inertial Fusion Energy
- Nuclear Physics Electronics Design and Fabrication
- Nuclear Physics Accelerator Technology
- Nuclear Physics Instrumentation, Detection Systems and Techniques
- Deactivation and Decommissioning of Facilities and Site Remediation in The Doe Complex
- Numerical Software Maintenance
- Scientific Visualization and Data Understanding
- High Performance Networks
- Scalable System Software for Petascale Computer Systems
- Remote Sensing
- Radiation Detection
- Seismic Detection
- High Energy Physics Data Acquisition and Processing
- Accelerator Technology for The International Linear Collider
- Advanced Concepts and Technology for High Energy Accelerators
- Radio Frequency Accelerator Technology for High Energy Accelerators and Colliders
- High-Field Superconductor & Superconducting Magnet Technologies for High Energy Particle Colliders
- High Energy Physics Detectors
- Advanced Technologies for Nuclear Energy
- Search, Discovery and Communication of Scientific and Technical Knowledge in Distributed Systems
- Power Generation Technologies for Coal-Based Power Plants
- Innovations to Reduce Environmental Impact and Increase Efficiency in Coal Power Plants
- High Performance Materials for Long Term Energy Applications
- Enhanced Oil Recovery, Oil Shale, Oil and Natural Gas Technologies

TOPIC: INSTRUMENTATION FOR NEUTRON SCATTERING, ELECTRON MICROSCOPY, AND SCANNING PROBE MICROSCOPY

STTR Project
Company: Anasys Instruments Corp.
25 W. Anapamu St.
Suite B
Santa Barbara, CA 93101-5151
Title: Chemical Infrared Spectroscopic Imaging with Nanometer Spatial Resolution Using Atomic Force Microscopy
Summary:
The goal of this project is to use AFMs to perform chemical analysis on samples via IR spectroscopy at a resolution of sub-30nm. Successful realization of this goal would impact every American industry that relies on scientific research at the nano-scale with the most prominent examples being the Multi-Billion industries of Materials and Pharmaceuticals.

STTR Project:
Company: Cryogenic Applications F, Inc.
450 Bacon Springs Lane
Clinton, TN 37716-5311
Title: Development and Neutronic Validation of Pelletized Cold and Very Cold Moderators for Pulsed Neutron Sources
Summary:
The Spallation Neutron Source produces intense beams of cold neutrons for scientific research. The proposed research will lead to a more efficient beam line component which could double the output of cold neutrons at a few percent of the original cost.

Company: Hummingbird Scientific, LLC
8300 28th Court NE Unit 200
Lacey, WA 98516
Title: Nanoscale Imaging of Solid-State Energy Conversion Processes at the Solid-Liquid Interface Using Real Time Transmission Electron Microscopy
Summary:
Currently, direct observation in real-time of microscopic electrochemical processes for the creation and storage of energy is hindered by limitations of current specimen holders for electron microscopes. This project proposes to develop and commercialize a prototype fluid specimen holder to give researches radically improved methods for studying energy for better understanding of energy generation and storage processes at the molecular scale. This in turn should facilitate micro-miniaturization of current energy devices such as batteries and fuel cells, as well as the discovery of alternative energy sources.

Company: Parallax Research, Inc.
P.O. Box 12212
Tallahassee, FL 32317
Title: Parallel Data Collection Wavelength Dispersive X-Ray Spectrometer for Use on Scanning Electron Microscopes
Summary:
We will develop a new type of high performance x-ray spectrometer for use on electron microscopes for measurement of elements in small features. This spectrometer will provide much faster analysis than competing systems.

Company: Proportional Technologies, Inc.
8022 El Rio Street
Houston, TX 77054-4184
Title: High Rate Large Area Enriched Boron Neutron Detector for SNS
Summary:
The Spallation Neutron Source (SNS) facility will push available thermal neutron flux at least an order of magnitude and drastically improve neutron scattering capabilities but high neutron flux intensity places severe demands on imaging instrumentation and many target stations have no acceptable detector selection. A novel detector technology based on boron coated straw detectors and economical methods of manufacturing will be developed providing a solution to this problem as well as to the problem of large scale deployment of neutron detection portal monitors to make our nation safer from the terrorist threat imposed by smuggling of plutonium.

Company:
Radiation Monitoring Devices, Inc.
44 Hunt Street
Watertown, MA 02472-4699
Title:
High Performance Neutron Detector
Summary:
The high performance superconducting radio frequency accelerators needed to explore the frontiers of particle physics require high purity, chemically treated surfaces. The new, acid-free electro-polishing methods developed in this project will facilitate implementation of environmentally friendly, “Green” production methods and result in significant cost savings.

Company:
Tech-X Corporation
5621 Arapahoe Avenue
Suite A
Boulder, CO 80303-1379
Title:
Virtual Instrumentation Experiment Optimization for High-Throughput Scientific Analysis
Summary:
By providing user-friendly Leadership Computing Facility access, neutron facility users will more rapidly transform their raw data into scientific results and discovery in the fields of advanced materials, biological systems, energy, and national security. The software tools produced by this Orbiter project will significantly help users provide better results sooner for complex systems.

STTR Project:
Company:
Xemed, LLC
16 Strafford Avenue
Durham, NH 03824
Title:
Ex-situ Polarized 3He Neutron Spin Filter and Analyzer
Summary:
The proposed technology for producing large quantities of nuclear polarized 3He gas can serve dozens of experiments at the Spallation Neutron Source in Tennessee and at Los Alamos. This project would allow investigations into the magnetic structures of thin films and offer synergistic benefits for diagnostic medical imaging of lung function.

TOPIC: TECHNOLOGY TO SUPPORT BES USER FACILITIES

Company:
Creare Incorporated
16 Great Hollow Road
P.O. Box 71
Hanover, NH 03755-0071
Title:
A Magneto-Hydrodynamic System for Generating High-Pressure Impluses in Spallation Targets
Summary:
A system is being developed to model and analyze the mechanisms behind wall erosion on the Spallation Neutron Source target. This work will help enable the facility, which is used for materials science research, to operate at higher efficiency and lower cost.

Company:
Q-Peak, Incorporated
135 South Road
Bedford, MA 01730-2307
Title:
A Mid IR Ultrafast Laser System for High Field Physics
Summary:
Revolutionary advances in fundamental studies of atoms, molecules and solids have been made possible by development of ultra-high-power, ultra-short pulse lasers and associated optics to generate intense X-ray pulses. Spin-off applications of the advances cover a wide and diverse area, ranging from diagnostic medicine to remote detection of hidden explosives and other weapons of mass destruction. Our program will make a significant advance in the laser technology needed for the next generation of ultrafast X-ray systems, and will also reduce their cost and complexity.
Company: Radiation Monitoring Devices, Inc.
Address: 44 Hunt Street, Watertown, MA 02472
Title: Advanced Scintillation Detector for Synchrotron Facilities
Summary: The development of the scintillator proposed here will enable the full potential of current state-of-the-art X-ray detectors, which is critical for basic research at synchrotron sources. Other areas benefiting from this technology are medical imaging, X-ray scanning equipment at airports and border control, detectors for homeland security, and small animal research, which is so important for the development of new drugs in a rapid and cost effective manner.

TOPIC: ACCELERATOR TECHNOLOGIES FOR PRESENT AND FUTURE ACCELERATOR FACILITIES

Company: Advanced Energy Systems, Inc.
Address: 27 Industrial Blvd, Unit E, Medford, NY 11763-2286
Title: Improved Superconducting Accelerator System for Next Generation Light Sources
Summary: Modern synchrotron light sources place ever higher demands on SRF acceleration to achieve peak performance. We will complete the detailed design of an advanced SRF system to meet these demanding specifications. This advanced design will put a US industrial firm in the global marketplace currently dominated by foreign suppliers.

Company: Advanced Energy Systems, Inc.
Address: 27 Industrial Blvd, Unit E, Medford, NY 11763-2286
Title: High Power Fundamental Power Coupler for Next Generation Light Sources
Summary: We propose developing a High Power Fundamental Coupler for third generation light sources such as the BNL NSLS-II. Technology developed from this effort will have application to fourth and higher generation light sources as well as high current/high power accelerators of the future.

Company: Niowave, Inc.
Address: 1012 N. Walnut Street, Lansing, MI 48906
Title: Development of a Superconducting RF 1.5 GHz Landau Cavity for Synchrotron Light Sources
Summary: We plan to collaborate on the development of superconducting 1.5 GHz Landau cavities that will greatly increase the beam lifetime of future light sources such as the NSLS-II. This research would lead to a domestic supplier of superconducting RF cavities for existing and planned light sources.

TOPIC: ADVANCED COAL RESEARCH

Company: Materials and Systems Research, Inc.
Address: 5395 West 700 South, Salt Lake City, UT 84104
Title: Advanced Coal Research - Sealing Systems for High Temperature SOFC
Summary: This project will provide a viable sealing option for planar solid oxide fuel cells providing an impetus to commercialization of these green and energy efficient power sources.

STTR Project:
Company: Resonon, Inc.
Address: 619 N. Church Avenue, Suite 3, Bozeman, MT 59715-3087
Title: Hyperspectral Sensor for Large-Area Monitoring of Carbon-Dioxide Reservoirs and Pipelines
Summary: This effort will provide a technology to monitor leakage from carbon sequestration sites and pipelines. The proposed
system utilizes natural vegetation as a massive sensor array by identifying plant stress caused by exposure to elevated levels of underground carbon-dioxide.

Company: TDA Research, Inc.
12345 W. 52nd Avenue
Wheat Ridge, CO 80033-1916
Title: Novel Sorbents for Removal of Mercury, Arsenic, Sulfur and Halides from Coal-Derived Synthesis Gas
Summary: The liquid fuels produced by FT synthesis using synthesis gas derived from coal can provide an immediately viable alternative to crude oil required to help provide energy independence to the U.S. The newly developed gas clean-up process offers several key benefits that can increase the cost effectiveness of the FT process.

Company: Vista Photonics, Inc.
67 Condesa Road
Santa Fe, NM 87508-8136
Title: Large Area Leak Sensor for Sequestered Carbon Dioxide
Summary: Inexpensive high-performance sensors are required in the field to detect leaks of carbon dioxide from permanent geologic storage sites. The prototype laser sensor technology will provide the required measurements for an exceptional value.

Company: Physical Sciences Inc.
20 New England Business Center
Andover, MA 01810
Title: Impermeable SiC Composites
Summary: Development of impermeable high temperature composite technology will enable the nation to develop leap frog nuclear power technology and high performance gas turbines, reducing the nation's dependence on foreign energy supplies and helping protect the environment. Leadership in high temperature materials technology will allow American manufacturers to maintain global leadership in gas turbine technology and improve our balance of trade.

Company: Transition45 Technologies, Inc.
1963 North Main Street
Orange, CA 92865-4101
Title: Advanced Nb-based Intermetallics for Nuclear Applications
Summary: Niobium-based intermetallics are innovative advanced materials that are among the closest to replacing superalloys in very high temperature applications. The successful development and implementation of these alloys may revolutionize technology by allowing for much higher temperature operating conditions for nuclear systems as well as industrial gas turbines and aircraft engines.

Company: Enogetek Inc.
2055 Albany Post Road
Suite AT-6
Croton-on-Hudson, NY 10520-1156
Title: High Performance Hydroxyl Conductive Membrane For Advanced Rechargeable Alcaline Batteries
Summary: Successful completion of the current program will make a significant contribution toward development of the key energy storage system that can make the utilization of alternative energy more practical and stable. The technology could also be used in HEV and PHEV to improve the energy efficiency of the vehicles.

Company: Excellatron Solid State, LLC
263 Decatur Street
Atlanta, GA 30312-1705
Title: Novel Solid State Electrolyte Development
Summary:
Further development of rechargeable lithium batteries requires dramatic improvement of the ionically conducting organic electrolyte presently used in the batteries. This project will develop a novel solid state electrolyte prepared by a sol gel technique that will improve lithium battery capabilities and safety, making the lithium batteries adequate for high energy applications such as electric vehicles.

Company:
NEI Corporation
400 Apgar Drive
Suite E
Somerset, NJ 08873

Title:
Membranes for Solid State Lithium Batteries

Summary:
A solid electrolyte membrane technology is being developed that will enable a new generation of cost effective lithium-ion batteries with improved safety and energy storage capacity.

TOPIC: MATERIALS FOR ADVANCED COOLING APPLICATIONS

Company:
Hi-Z Technology
7606 Miramar Road, Suite 7400
San Diego, CA 92126-4210

Title:
Study of the Use of Quantum Well Thermoelectrics for Truck Air Conditioning

Summary:
A solid-state cooling device which is free of environmentally harmful refrigerant gases and powered by truck exhaust is being developed. Phase 1 of the program demonstrated through a working model that solid-state Thermoelectrics could be used in a cooling system to cool truck cabs.

Company:
NEI Corporation
400 Apgar Drive
Suite E
Somerset, NJ 08873

Title:
Enhancing the Heat Exchanger Performance Through the use of Durable Superhydrophobic Surface Treatment

Summary:
The proposed program to implement a nanotechnology-based surface treatment on industrial vapor-to-liquid heat exchangers has the potential to enhance the performance of heat exchangers by an order of magnitude, thereby improving the energy efficiency of industrial processes, including power generation through renewable and non-renewable energy source.

Company:
TIAX, LLC
15 Acorn Park
Cambridge, MA 02140-2301

Title:
Heat Activated Metal Hydride Refrigeration Cycle

Summary:
Roughly two-thirds of the fuel used in electric power plants to generate electricity is wasted in the form of dissipated heat. This project will develop refrigeration technology which will make use of this heat to cool buildings or provide refrigeration for supermarkets and industry.

TOPIC: SOLID-STATE LIGHTING

Company:
Universal Display Corporation
375 Phillips Blvd.
Ewing, NJ 08618

Title:
Enhanced WOLEDs Outcoupling Using Low Index Grids

Summary:
We will increase the conversion efficiency of electrical energy into light of white-organic-light-emitting devices and thereby enable replacement of inefficient conventional incandescent bulbs, which consume over 8% of the electricity produced by the United States. Our portfolio of technical expertise and infrastructure will enable the development of high efficiency solid state white lighting sources.
Company: Compact Membrane Systems, Inc.
Address: 335 Water Street
City: Newport, DE 19804-2410
Title: Removal Of Ammonia And Water To Enhance Yield Of Kinetically-Controlled Beta-Lactam Synthesis
Summary: This program is a platform technology to enhance chemical synthesis and also dry organics including fuel grade ethanol from biomass.

Company: KSE, Inc.
Address: 665 Amherst Road
City: Sunderland, MA 01375-9420
Title: Acetic Acid Manufacture by the Selective Photocatalytic Oxidation of Ethylene
Summary: Acetic acid is a large volume commodity chemical that is a vital building block in the U.S. chemical industry. Current production technologies are inefficient. The proposed technology will cut energy consumption in half, reduce greenhouse gas emissions, improve efficiency of use of hydrocarbons, reduce dependence on foreign oil, and improve U.S. employment in the chemical industry.

Company: Lynntech, Inc.
Address: 7610 Eastmark Drive
City: College Station, TX 77840
Title: Improved Heterogeneous Catalyst for the Production of Biodiesel
Summary: This Phase II SBIR project involves the development of a new catalyst to cost-effectively transform renewable sources of energy such as plant oils to biodiesel. The development of this technology will reduce the country's dependence on foreign oil and result in a net decrease in carbon dioxide emissions.

Company: Materials & Electrochemical Research (MER)
Address: 7960 S. Kolb Road
City: Tucson, AZ 85766
Title: An Innovative Triple Function Cathode for MEMS Fuel Cells
Summary: This project proposes using a single material for use in miniature electric power sources that replaces three materials used in conventional fuel cells thus simplifying their assembly and reducing their cost. This improved miniature fuel cell system provides more power for longer to portable electronics while reducing the quantity of toxic battery materials.

Company: TDA Research, Inc.
Address: 12345 W. 52nd Avenue
City: Wheat Ridge, CO 80033-1916
Title: Novel Catalytic Ammoxidation Process
Summary: Acrylonitrile is an important chemical intermediate for producing acrylic fibers, synthetic rubber and other polymers. Current catalysts operate at high temperatures and generate large quantities of unwanted byproducts. The new catalyst produces more acrylonitrile, less byproducts, can be used in existing petrochemical plants, and will increase the energy efficiency of acrylonitrile manufacture.

TOPIC: CHEMICAL REACTIONS AND SEPARATION PROCESSES FOR BIOREFINERY APPLICATIONS
Company:
Trillium FiberFuels, Inc.
33898 SE Eastgate Circle
Corvallis, OR 97333-2248

Title:
Xylose Utilization for Ethanol Production Enabled by a Parallel Microfiber Reactor with Immobilized Xylose Isomerase

Summary:
Greatly increased supplies of sustainable liquid fuels such as cellulosic ethanol are clearly needed in the U.S. We have developed a novel process that enables the fermentation of xylose via an enzymatic conversion - resulting in higher-yield, lower-cost processing of cellulosic ethanol as a replacement for gasoline.

Company:
United Environment & Energy LLC
111 Ridge Road
Horseheads, NY 14845-1507

Title:
Structured Catalyst for Biodiesel Production

Summary:
Although interest in biodiesel is rapidly increasing, the process by which biodiesel is synthesized has not changed much in the last two decades and is far from being efficient. This project aims to develop a high efficiency, high productivity, and low cost biodiesel production technology.

TOPIC: TECHNOLOGIES RELATED TO ENERGY STORAGE FOR HYBRID AND PLUG-IN HYBRID ELECTRIC VEHICLES

Company:
MMaxPower, Inc.
141 Christopher Lane
Harleysville, PA 19438

Title:
Development of High Temperature Melt Integrity Separators for Lithium-Ion Cells

Summary:
During high power use and abuse situations, a battery can become quite hot causing the internal separator to fail, possibly resulting in explosion and fire. Electro-spinning technology is being used to create robust separators that will withstand higher temperatures before failure, significantly increasing lithium-ion battery safety.

Company:
Policell Technologies, Inc.
160 Liberty Street, Building #4
Metuchen, NJ 08840

Title:
Development of High Temperature Melt Integrity Separators for Lithium-Ion Cells

Summary:
Commercial separator products shrink at high temperatures. This shrinking problem could cause an internal short-circuit of batteries. This safety problem is delaying the introduction of lithium-ion batteries into large format systems such as hybrid electric vehicles. This project will develop separators that are thermally stable for making safe batteries.

Company:
TIAX, LLC
15 Acorn Park
Cambridge, MA 02140-2301

Title:
High Voltage Electrolyte for Lithium-Ion Cells

Summary:
Technology is being developed to improve performance and reduce costs of batteries for PHEVs and HEVs, which will make these vehicle technologies more commercially viable, and thus increasing the likelihood that they will yield their potential environmental, economic and political benefits.

TOPIC: NANOTECHNOLOGY

Company:
NEI Corporation
400 Apgar Drive
Suite E
Somerset, NJ 08873

Title:
Self-Healing Polymeric Coatings: Beyond Scratch-Healing

Summary:
A nano-composite self-healing coating technology is being developed to significantly enhance the operational life of industrial coatings, thereby greatly reducing maintenance cost.
Company: nGimat Co.
5315 Peachtree Industrial Blvd.
Atlanta, GA 30341
Title: Nano-Engineered Anodes for Lithium-ion Batteries
Summary: The goal of this project is to develop a critical energy storage component of Lithium-ion batteries that will power the next generation of Hybrid Electric Vehicles & off-grid energy storage facilities for the commercial and military sectors. Automobiles powered by batteries containing this component will reduce our dependence on foreign oil & batteries, reduce harmful emissions and strengthen global competitiveness of the US battery & automobile industries.

TOPIC: ALTERNATIVE FEEDSTOCKS

Company: Chesapeake PERL, Inc.
8510A Corridor Road
Savage, MD 20763
Title: Identification, Production and Characterization of Novel Lignase Proteins from Termites for Deplymerization of Lignocellulose
Summary: Termites have solved the problem blocking efficient biofuel production from switch grass, corn stover, and wood pulp; they can degrade lignin and hemicellulose, the chemicals which interfere with ethanol fermentation. This project is identifying key termite enzymes, and developing ways to produce them for manufacturing next generation biofuels.

Company: Plant Sensory Systems, LLC.
6204 Blackburn Lane
Baltimore, MD 21212
Title: Increased Seed Oil by Metabolic Regulation
Summary: Increased oilseed productivity per acre is needed to help meet the biodiesel demand. The proposed research will move a novel gene construct into canola to function as a master switch to increase seed oil content.

Company: Suganit Systems Inc.
10903 Hunt Club Road
Reston, VA 20190-3912
Title: Feasibility of Commercialization of a Pre-Pretreatment Process for Enhanced Biomass Saccharification
Summary: Pretreatment of biomass plays a critical role in the ability to convert cellulosic biomass to fuels and chemicals. This phase II research and development addresses the development of a pretreatment technique that has allowed successful production of ethanol and other chemicals from biomass.

TOPIC: ATMOSPHERIC MEASUREMENT TECHNOLOGY

Company: Aerodyne Research, Inc.
45 Manning Road
Billerica, MA 01821-3976
Title: Characterization of Particulate Organic via Combined Thermal Desorption Aerosol Gas Chromatography and Aerosol Mass
Summary: Small airborne particles generated from energy-related activities can adversely impact global climate, human health, and visibility. We propose to develop an instrument with unique capabilities for identifying and measuring the organic constituents of aerosol particles, leading to a better understanding of the sources, transformations, and fates of organic atmospheric particulate matter.

STTR Project:
Company: Aerosol Dynamics, Inc.
935 Grayson Street
Berkeley, CA 94710-2640
Title: An In-Situ Instrument to Assess the Concentration and Phase Partitioning of Atmospheric Semi-Volatile Organic Compounds
SUMMARY:
Semi-volatile organic compounds are pervasive in the environment, in urban air, and in the global atmosphere, yet are poorly characterized. The proposed instrument will measure these compounds with hourly time resolution to increase knowledge of sources, formation mechanisms and effects on our environment.

COMPANY:
Boulder Environmental Sciences and Technology
4425 Hastings Drive
Boulder, CO 80305

TITLE:
Profiling Radiometer for Atmospheric and Cloud Observation (PRACO)

SUMMARY:
We will build a working prototype of PRACO, a new tool for cloud observation. Some socio-economic benefits that PRACO's reliable forecasting will provide are improved civil government, industrial and military planning, increased natural hazard mitigation, response, and recovery, and hedging against uncertainty.

COMPANY:
ProSensing, Inc.
107 Sunderland Road
Amherst, MA 01002-1098

TITLE:
High Resolution Millimeter Wave Radar-Radiometer System for Volume Imaging of Clouds

SUMMARY:
The role of clouds in regulating incoming solar radiation and upwelling infrared radiation is a poorly understood factor affecting global climate. This project will develop a high resolution scanning cloud radar designed specifically to test cloud model predictions.

TOPIC: GENOMES-TO-LIFE (GTL) AND RELATED BIOTECHNOLOGIES

COMPANY:
Pharyx, Inc.
49 Hemenway St #3
Boston, MA 02115

TITLE:
Microbioreactor Technology for Obligate Anaerobes

SUMMARY:
Anaerobes are the source of industrially useful products such as liquid biofuels. Because they are sensitive to oxygen, these organisms are very difficult to culture. We are developing compact, easy-to-use, disposable devices for culturing anaerobes, which would provide a great benefit to industries that are dependent on culturing anaerobes.

COMPANY:
Tetragenetics, Inc.
95 Brown Road
Ithaca, NY 14850

TITLE:
Overexpression and Rapid Purification of Membrane and Secretory Proteins in Tetrahymena

SUMMARY:
Genetically engineered proteins have become increasingly important in a wide range of applications that extend from alternative fuel production to the treatment of human and animal disease. This project is aimed at the development of new technologies for rapid production of these proteins at the lowest possible cost.

TOPIC: CARBON CYCLE MEASUREMENTS OF THE ATMOSPHERE AND THE BIOSPHERE

COMPANY:
Aerodyne Research, Inc.
45 Manning Road
Billerica, MA 01821-3976

TITLE:
Dual Laser Isotopic Flux Monitor for Carbon Dioxide and Water Vapor

SUMMARY:
The increasing concentration of carbon dioxide in the Earth's atmosphere must be understood since carbon dioxide is the key driver of global warming. This novel instrument will quantify the sources and sinks of carbon dioxide by rapidly measuring the concentrations of the stable isotopes of both carbon dioxide and water.

COMPANY:
Atmospheric Observing Systems, Inc.
1930 Central Avenue
Suite A
Boulder, CO 80301-2895
Title: The Ratiometric NDIR Analyzer for Robotic Platforms
Summary: We are developing CO2 technology intended to produce a new data product, CO2 Weather. CO2 Weather will provide scientists with greater spatial resolution CO2 data and likewise inform individual American citizens on the environmental impacts of their daily lives and our predominant form of energy production.

Company: LI-COR Biosciences
4421 Superior Street
Lincoln, NE 68504-1395

Title: A Closed-Path Methane and Water Vapor Gas Analyzer
Summary: We propose to develop an economical, robust, and reliable methane and water vapor gas analyzer capable of long-term measurements in remote areas for climate change and environmental research. Such measurements are essential for quantifying the amount of CH4 released from various ecosystems (wetlands, rice paddy and forest etc) and other surface contexts (e.g. landfills, animal husbandry lots etc.), understanding dynamics of atmospheric methane budget and their impact on climate change and global warming.

Company: Vista Photonics, Inc.
67 Condesa Road
Santa Fe, NM 87508-8136

Title: Price-Protected High-Precision Carbon Dioxide Analyzer
Summary: Inexpensive high-performance carbon dioxide sensors are required in the field to understand global warming. This project’s commercialized laser sensor technology will provide the required measurements for an exceptional value.

TOPIC: TECHNOLOGIES FOR SUBSURFACE CHARACTERIZATION AND MONITORING

STTR Project:
Company: Burge Environmental, Inc.
6100 South Maple Avenue
Suite 114
Tempe, AZ 85283-2872
Title: In-Situ Monitoring of Uranium in Ground Water Using a Colorimetric-Based Sensor: Enabling the Mapping of Uranium Plume Migration of Contaminated DOE Sites
Summary: A field-deployable monitoring system for the cost-effective and rapid determination of radioactive substances in the groundwater at federal sites, such as Hanford Site, Washington, will be developed. The development of the system will decrease the future cost of site remediation.

Company: Los Gatos Research
67 East Evelyn Avenue
Suite 3
Mountain View, CA 94041
Title: Field-Deployable Water Isotope Analyzer for Stream Sampling
Summary: This project will develop a field-deployable analyzer to continuously monitor water sources and help provide information about the storage, flow pathways, and sources of water. Such measurements are critical to DOE’s waste remediation efforts.

Company: Vista Clara Inc.
2615 W Casino Road, Suite 4-JK
Everett, WA 98204
Title: Surface NMR Instrumentation and Analysis Methods for Characterizing Vadose Zone Hydrology
Summary: This project will develop a new magnetic resonance imaging instrument and analysis techniques to image and characterize groundwater and contaminant transport properties in the near subsurface. The technology developed through this program will be widely applicable to investigation and remediation of underground contamination and contaminated aquifers, groundwater resource development, and groundwater resource management.
COMPANY: Molecular NeuroImaging, L.L.C.
60 Temple Street
Suite 8A
New Haven, CT 06510
Title: Development of Automated Software Program for the Analysis of Alzheimer’s Disease Beta-Amyloid Scans
Summary: We will apply the newly developed software, Objective and Generalized Tracer Evaluation (OGRE), to a prospective clinical study that will assess the utility of the advanced image processing package as an aid in the automated, early, and accurate diagnosis and monitoring of Alzheimer’s patients.

COMPANY: Radiation Monitoring Devices, Inc.
44 Hunt Street
Watertown, MA 02472-4699
Title: High Resolution Scintillators for SPECT
Summary: The proposed project will investigate a novel detector technology that will be very useful in medical imaging. It will also be useful in other scientific studies (such as high energy physics and space research) as well as commercial applications (such as oil exploration, medical imaging, and non-destructive evaluation).

COMPANY: Radiation Monitoring Devices, Inc.
44 Hunt Street
Watertown, MA 02472-4699
Title: Advanced Detectors for PET
Summary: The proposed research will investigate a promising detector technology that will have major impact in scientific studies, health care, homeland defense, oil exploration as well as industrial applications.

COMPANY: Radiation Monitoring Devices, Inc.
44 Hunt Street
Watertown, MA 02472-4699
Title: Novel Approach for Depth-of-Interaction Encoding in PET
Summary: The proposed project will investigate a novel detector technology that will be very useful in nuclear medicine studies. It will also be useful in other scientific studies (such as high energy particle physics and space research), homeland security as well as commercial applications (such as oil exploration and non-destructive evaluation).

COMPANY: AnemErgonics, LLC
7015 Nile Court
Arvada, CO 80007-7049
Title: SMarT Tower Systems for Small Wind Turbines (Simple Modular Technology)
Summary: This project seeks to simplify installation and reduce the cost of electricity for small wind turbines on monopole towers. This project will design, test, and market improved versions of its SMarT Tower system, including foundations.

COMPANY: Physical Optics Corporation
20600 Gramercy Place
Building 100
Torrance, CA 90501-1821
Title: Wind Resource Assessment Lidar
Summary: The proposed technology provides a cost-effective tool to accurately and efficiently evaluate wind resource conditions at potential sites for future wind farms, enabled by rapid deployment and autonomous operational capabilities.
Company: Acree Technologies Incorporated
1900 Olivia Road
Unit D
Concord, CA 94520
Title: Advanced Coatings to Improve the Efficiency, Color Rendering and Life of High Intensity Discharge Lamps
Summary: This project will lead to a more efficient light that will save the United States over 40 TWh of energy per year. This will help reduce the United State’s dependence on foreign energy sources and help achieve the DOE goal of developing energy efficient, high-quality lighting technologies by 2025 that can illuminate buildings using 50% less electricity compared to 2005 technologies.

Company: PhosphorTech Corporation
351 Thornton Road
Suite 130
Lithia Springs, GA 30122
Title: Advanced Phosphor Technologies For Energy Efficient Lighting And Energy Harvesting
Summary: Upconversion nanophosphors will initiate new paradigms in the conservation and generation of energy. Highly efficient lamp and solar cell technologies will be produced and revolutionize the US lighting and solar power industries, by providing competitive technologies that will significantly reduce global energy use and environmental pollution.

Company: Surmet Corporation
31 B Street
Burlington, MA 01803
Title: Selective Emitter Based Energy Efficient Incandescent Lamp Technology
Summary: New high energy efficiency incandescent lamps based on our technology can produce substantial energy savings and attendant reduction in carbon emissions. We will develop a product that will have high acceptance from consumers and one that is suited for use in the 2 billion incandescent lamps sockets that exist in USA.

TOPIC: GEOTHERMAL TECHNOLOGIES

Company: Composite Technology Development Inc.
2600 Campus Drive, Suite D
Lafayette, CO 80023359
Title: Improved High-Temperature ESP Motor Lead Extension Cables for Reliable Geothermal Power Production
Summary: Geothermal energy is a viable, environmentally-clean alternative energy source under development through the U.S. Department of Energy. This effort aims to provide robust power cables to increase the reliable lifetime of the downhole equipment necessary for commercial-scale geothermal energy production.

Company: Diamond Materials Inc.
120 Centennial Avenue
Piscataway, NJ 08854
Title: Diamond-Hardfaced Nanocomposites for Extended Service Lives of Pump Berings in Geothermal Wells
Summary: Geothermal energy production is one of several proven technologies that promise to make significant contributions to US energy independence within the next 20 years. This project addresses the challenge of achieving increased lifetime for a geothermal pump bearing, thus increasing operating efficiency and reducing energy production cost.

Company: NEI Corporation
400 Apgar Drive
Suite E
Somerset, NJ 08873
Title: High Performance Fluoroelastomer Nanocomposite Seals For Geothermal Submersible Pumps
Summary: The proposed program to enhance the properties of elastomeric seals for use in geothermal energy production has the
potential to prevent failure of equipment and to allow the downhole equipment to run unattended for extended periods of
time, greater than 5 to 10 years, without maintenance.

TOPIC: HYDROGEN, FUEL CELLS AND INFRASTRUCTURE TECHNOLOGIES

Company:
Directed Technologies, Inc.
3601 Wilson Blvd.
Suite 650
Arlington, VA 22201

Title:
Aqueous Phase Base-Facilitated-Reforming (BFR) of Renewable Fuels

Summary:
This project investigates a novel low cost method of producing gaseous hydrogen from biomass or municipal solid waste
(MSW). The process utilizes an aqueous phase Base-Facilitated-Reforming (BFR) reactor to produce pure hydrogen gas
without additional purification and, in one configuration, sequester carbon in solid form to avoid release of greenhouse
gases.

Company:
Faraday Technology, Inc.
315 Huls Drive
Clayton, OH 45315

Title:
Faradayic ElectroEtching of Stainless Steel Bipolar Plates

Summary:
This SBIR project will enable a high volume, low-cost, environmentally benign manufacturing process for bipolar plates for
polymer electrolyte membrane fuel cells. This will facilitate the viability of fuel cells with an environmental and societal
benefit in terms of reducing pollution and increasing manufacturing job opportunities in the United States.

Company:
Giner Electrochemical Systems, LLC
89 Rumford Aveue
Newton, MA 02466-1311

Title:
Anode Concepts for SO2 Crossover Reduction in the HyS Electrolyzer

Summary:
Inexpensive, carbon-free hydrogen production is crucial to the strategy of efficiently powering our vehicles with this
emissions-free fuel. This project will aid DOE’s nuclear hydrogen development efforts by further improving Hybrid Sulfur
electrolyzer design and, thereby, the efficiency and economic viability of this thermochemical cycle.

Company:
InnovaTek, Inc.
350 Hills Street, Suite 104
Richland, WA 99354-5511

Title:
Power Generation from an Integrated Biofuel Reformer and Solid Oxide Fuel Cell

Summary:
To help meet America’s needs for improved energy security and reduced environmental impacts this project will develop
technology for distributed energy generation from renewable sources using its proprietary steam reforming process with a
solid oxide fuel cell for localized power generation from wood saw dust. Two public goals—environmental quality,
especially the reduction of greenhouse gas emissions, and energy security—provide the policy foundation for a renewable-
based energy system and the proposed technology.

TOPIC: PETROLEUM INDUSTRY TECHNOLOGIES

Company:
Lynntech, Inc.
7610 Eastmark Drive
College Station, TX 77840

Title:
Non-thermal Plasma Cracking of Residual Distillate and Vacuum Gas Oil

Summary:
Heavy crude oil is becoming increasing important as supplies of light crude run out. However, processing of heavy crude is
limited to large scale refineries. This project will allow cost effective refining of heavy crude in the Nation’s small refineries,
which are critical to meeting the Nation’s liquid fuel supply.
Title: Development of a Thermally and Electrically Self-Sustaining Hydrogen Generation System Directly Using Petcoke
Summary: This project provides a technical and economic means for in-situ hydrogen production directly using a locally available opportunity fuel for petroleum refinery applications.

Company: TDA Research, Inc.
12345 W. 52nd Avenue
Wheat Ridge, CO 80033-1916
Title: Hydrogen Production for Refineries
Summary: North America contains large reserves of heavy crude oil, but it takes considerable hydrogen gas to refine them. This project is developing a new technology so that refineries can produce hydrogen at a cost that is much lower than hydrogen from conventional technologies or purchased hydrogen.

Title: Non-Contact, Printable Metallic Inks for Silicon Solar Cells
Summary: Electrical contacts are a critical part of photovoltaic technology and in particular represent a difficult and costly area for silicon solar cell production. The proposed research will exploit recent advances in nanotechnology to lower production costs for silicon solar cells by developing conductive inks that can be applied using non-contact printing techniques.

Company: Crystal Systems, Inc.
27 Congress Street
Salem, MA 01970
Title: Material Utilization and Waste Reduction through Kerf Recycling
Summary: Currently, when silicon ingots are sliced into wafers for solar cells, nearly half of this expensive silicon ends up being wasted in the silicon swarf (or sawdust). A little used alternative technique for slicing silicon into wafers will allow this silicon sawdust to be recycled into new, high quality silicon ingots.

Title: Multifunctional UV Curable Sol-Gel Organic Hybrid Nanocomposite Encapsulation System
Summary: To meet DOE SAI goals, a protective encapsulant is being developed to increase the efficiency and lifetime of solar cells/modules by providing an oxygen and moisture barrier with super hydrophobic and anti-reflection properties. By mass producing this encapsulant roll-to-roll, the cost of solar cells can be reduced by 50%.

Company: Luminit, LLC
1850 205 Street
Torrance, CA 90501-1821
Title: Lightweight Metal Foams with Tailorable Structure and Properties
Summary: A low cost technology for metal foams with a uniform, consistent, and well-controlled cell structure and properties will be developed. New opportunities will be opened for production of lightweight energy absorbing vehicle components, which enable enhanced safety as well as weight and cost savings.

Company: NEI Corporation
400 Apgar Drive
Suite E
Somerset, NJ 08873
Title: Nanotechnology-Based Self-Healing Coating System to Enable Extensive Use of Magnesium Alloys in Automotives
Summary: The nanotechnology based self-healing coating system is designed to enable use of magnesium alloys in automobiles and hence increase their fuel efficiency.

Company: Nanohmics, Inc.
6201 E. Oltorf Street #400
Austin, TX 78741
Title: High Temperature, High Energy Density Film Capacitors
Summary: This SBIR program will improve the performance of current capacitors by allowing them to operate at higher temperatures and higher voltages in smaller volumes current capacitors. Improvements in capacitors will, in turn, reduce the size of many military and commercial electronic systems.

TOPIC: PRODUCTION OF BIOFUELS FROM BIOMASS

Company: ACENT Laboratories, LLC
3 Scott Lane
Manorville, NY 11949
Title: A Novel Low Cost, High Efficiency, Algal Biomass Harvest and Dewatering Technology for Biodiesel Production
Summary: Biodiesel produced from microalgae has been identified as an attractive renewable fuel though the cost to produce it is not yet economically attractive. This project is developing a low cost, high efficiency algae harvesting and dewatering system to address one of the key process steps and hence facilitate the widespread utilization of this feedstock.

Company: Altex Technologies Corporation
244 Sobrante Way
Sunnyvale, CA 94086
Title: Biomass Blending Densification System (BBADS)
Summary: Biofuels plant production is constrained by the high cost of moving agricultural residues from the farm to a central processing plant. The development of the proposed biomass densification and energy enhancement system will reduce feedstock costs, rendering biofuels plants more competitive with fossil fuels.

Company: Renewable Algal Energy, LLC
225 Rosehaven Court
Kingsport, TN 37663-3427
Title: Algal Biodiesel via Innovative Harvesting and Aquaculture Systems
Summary: The production of biofuel from algae is one of the most promising new renewable fuel alternatives but research is needed to lower the cost of the process. New and improved methods for algae aquaculture and harvesting will be optimized and operated continuously in order to better estimate full-scale economics.

TOPIC: NATURAL DISASTER REDUCTION THROUGH TECHNOLOGY

STTR Project
535 W. Research Blvd.
Suite 209
Fayetteville, AR 72701
Title: SiC-Based Solid-State Fault Current Control System for Reduction of Power Distribution Networks
Summary: This project seeks to develop high-voltage, high-performance Solid-State Fault Current Controller (SSFCC) technology utilizing Silicon Carbide (SiC) super gate-turnoff thyristors (SGTOs). This technology will provide unprecedented fault protection capability greatly minimizing the recovery time and vulnerability of the network in the event of a large-scale natural disaster.

Company: Electrocon International Inc.
405 Little Lake Drive, Suite C
Ann Arbor, MI 48103
Title:
Simulating the Smart Electric Power Grid of the 21st Century

Summary:
This project proposes the development of a simulation tool that will give electric power grid engineers the ability to design and evaluate the fast, wide-area control needed to avoid cascading outages and blackouts. This next generation program will integrate some of the disparate simulation programs of today with new control and communication models to analyze and design the smart grid of tomorrow.

TOPIC: HIGH TEMPERATURE SUPERCONDUCTIVITY

Company:
Technology Applications, Incorporated
5700 Flatiron Parkway
Suite #5701A
Boulder, CO 80301-5718

Title:
Flexible Cryostat for Superconductors

Summary:
This project will develop an improved cryostat system using plastic materials to contain high-temperature superconductor cable. These materials are used widely for underground storage vessels and piping. The improved cryostat has the potential to: increase lifetime in underground or underwater applications, improve thermal efficiency, and significantly reduce life-cycle costs.

TOPIC: ADVANCED TECHNOLOGIES AND MATERIALS FOR FUSION ENERGY SYSTEMS

Company:
Plasma Processes, Inc.
4914 Moores Mill Road
Huntsville, AL 35811

Title:
Electrochemical Microalloying of Tungsten for Plasma Facing Component Applications

Summary:
Development of tungsten alloys with improved properties will allow the fabrication of robust fusion components; thus bringing fusion's promise of efficient electrical power generation, a step closer to being realized.

Company:
Ultramet
12173 Montague Street
Pacoima, CA 91331

Title:
Innovative Surfaces for Controlled Flow of Molten Lithium

Summary:
Fusion energy is an ideal alternative to fossil fuel energy, providing a greater quantity of environmentally friendly energy than wind, solar, and geothermal sources. Practical application of fusion requires the development of materials and structures that allow operation under the high temperature, high heat flux conditions necessary for cost-competitive energy generation.

TOPIC: FUSION SCIENCE AND TECHNOLOGY

Company:
Diversified Technologies, Inc.
35 Wiggins Avenue
Bedford, MA 01730

Title:
Power Supply for Ion Cyclotron Resonance Heating

Summary:
This project develop advanced RF transmitter capabilities for existing US fusion experiments which also will be available to international for future fusion experiments.

Company:
FAR-TECH, Inc.
3550 General Atomics Court
Building 15, Suite 155
San Diego, CA 92121

Title:
A Toolset for Kalman Filter Resistive-Wall-Mode Feedback Modeling Including Plasma Rotation

Summary:
The accurate, real-time identification and feedback control of unstable modes is essential for the success of advanced fusion reactors, and the development of these controls will speed the commercialization of efficient, clean fusion power. The proposed feedback tool will provide a key solution for an enhanced detection and feedback control of the instability.
Company:
FAR-TECH, Inc.
3550 General Atomics Court
Building 15, Suite 155
San Diego, CA 92121

Title:
Hyper-Velocity High-Density C60-Fullerene Plasma Jet for Disruption Mitigation

Summary:
Plasma jets have many important applications in magnetic fusion energy research. A reliable tool with real-time capability to solve the critical problem of disruption mitigation on future fusion reactors such as ITER will provide also a significant enhancement to other fusion and high energy density physics projects.

Company:
Nova Photonics, Inc.
One Oak Place
Princeton, NJ 08540

Title:
An In-Situ Calibration System for the MSW Diagnostic on ITER

Summary:
Experiments that study the potential for a safe and abundant energy source from magnetically confined fusion rely on the accurate measurements of magnetic fields. Next-generation devices pose new challenges for the calibration of existing techniques, and this project will prototype an in-situ calibration system that additionally enhances the measurement.

Company:
Physical Sciences Inc.
20 New England Business Center
Andover, MA 01810

Title:
Frequency Doubler for CO2 Laser ITER Diagnostics

Summary:
The ITER fusion reactor will lead the way for a future energy supply that is safe, does not generate greenhouse gases, and has an almost unlimited fuel. DOE plasma diagnostics are based on a CO2 laser and high efficiency color converting crystal for which this project will provide a one-hundred-fold improvement.

TOPIC:
HIGH ENERGY DENSITY PHYSICS FOR INERTIAL FUSION ENERGY

Company:
HyperV Technologies Corporation
13935 Willard Road
Chantilly, VA 20151

Title:
MiniRailguns for Fusion and HEDP

Summary:
This research project will demonstrate use of high velocity plasma jets to generate high density drivers suitable for imploding a plasma target to fusion relevant densities and temperatures. This technique could play a significant role in accelerating development of fusion power.

TOPIC:
NUCLEAR PHYSICS ELECTRONICS DESIGN AND FABRICATION

Company:
Radiation Monitoring Devices, Inc.
44 Hunt Street
Watertown, MA 02472-4699

Title:
Optical Detector with Integrated ADC for Digital Readout

Summary:
Advances in physics often track advances in detector technologies. This project provides a low cost, compact detector solution that facilitates the construction of large detector arrays used in fundamental physics experiments.

Company:
XIA, LLC
31057 Genstar Road
Hayward, CA 94544

Title:
High-Speed, Multi-Channel Detector Readout Electronics for Fast Radiation Detectors

Summary:
This project will develop high speed digital detector readout electronics that will help scientists to more precisely measure nuclear properties and thus better understand fundamental physics. It can also improve the performance of fast radiation detectors used in homeland security applications and other applications requiring precise timing.

TOPIC:
NUCLEAR PHYSICS ACCELERATOR TECHNOLOGY
Company: Alameda Applied Sciences Corporation
626 Whitney Street
San Leandro, CA 94577-1116
Title: Low Temperature Deposition and RF Analysis of Nb3Sn, an A-15 Superconductor for SRF
Summary: The proposed effort will continue to explore whether superconducting Niobium (Nb) and Triniobium Tin (Nb3Sn) thin films produced by cathodic arc deposition are useful in Superconducting Radio Frequency (SRF) accelerator cavities. If Nb or Nb3Sn thin-films on Cu or Al eventually replace bulk Nb in SRF facilities, that could reduce the operating costs of future particle accelerators significantly due to the reduced cost of Cu (~$3/lb) over Nb (~$300/lb). This key innovation directly supports the most advanced, state-of-the-art, large-scale research and development facilities and national labs. This fundamental high energy physics research infrastructure will lead to additional world-class science, and is critical to maintaining U.S. leadership in science and engineering. In the past, research at such facilities has led to many of the most important discoveries in physics, with numerous spin-off technologies developing into entirely new industries.

Company: Niowave, Inc.
1012 N. Walnut Street
Lansing, MI 48906
Title: Development of SRF Multi-Spoke Cavities for Electron Linacs
Summary: Future nuclear physics facilities will require high current electron linear accelerators. This project will develop superconducting multi-spoke cavities that offer several advantages over the elliptical structures used to date to accelerate electrons near the speed of light.

Company: Tech-X Corporation
5621 Arapahoe Avenue
Suite A
Boulder, CO 80303-1379
Title: Designing a Coherent Electron Cooling System for High-Energy Hadron Colliders
Summary: The Relativistic Heavy Ion Collider is colliding protons and gold ions to create conditions similar to what existed after the big bang. Novel software is being developed to assist DOE scientists in the design of accelerator systems to improve this premier nuclear physics facility.

Company: Tech-X Corporation
5621 Arapahoe Avenue
Suite A
Boulder, CO 80303-1379
Title: Integrated Multiple Effects Software for Nuclear Physics Applications
Summary: Nuclear physics accelerators are powered by microwaves which must travel in waveguide pipes between their room-temperature sources and the near-absolute-zero temperature of the accelerator structures. Design and analysis of this equipment requires parallel-processing software that integrates the very different aspects of thermal and microwave analysis.

TOPIC: NUCLEAR PHYSICS INSTRUMENTATION, DETECTION SYSTEMS AND TECHNIQUES

Company: Integrated Photonics, Inc.
132 Stryker Lane
Hillsborough, NJ 08844
Title: Neodymium-Containing Single Crystals for Neutrinoless Double Beta Decay Detection
Summary: Neutrinos are the most prolific of all elementary particles so that knowledge of their mass is critically important to our understanding of the birth and evolution of the universe. Neutrino-less double-beta decay experiments have been identified by the Nuclear Science Advisory Committee of the NSF and DOE as a most important next step to complement the exciting space telescope data by determining the mass scale of neutrinos.

Company: Nonlinear Ion Dynamics, LLC
13704 Saticoy Street
Panorama City, CA 91402
Title: Integrated Spin System for Production of Large Quantities of Stable Isotopes
Summary: There is an enormous unmet demand of stable isotopes as a result of limitation of existing technologies and lack of domestic supply. A patented evolutionary technology is proposed for separating large quantities of stable isotopes in metallic and gaseous forms efficiently and economically through joint funding by government and private sources.

Title: STTR Project
Company: NOVA Scientific, Inc.
10 Picker Road
Sturbridge, MA 01566-1251
Title: Compact and Efficient Cold and Thermal Neutron Collimators
Summary: Science Laboratory of the University of California Berkeley will develop compact neutron collimators to improve neutron radiography. This will provide researchers with beam collimation improvements and more sensitive instrumentation with higher contrast capability for biological specimens and materials research. It will further US technology leadership in neutron sciences.

Title: High-Purity Germanium Crystals for Low Background Counting Arrays
Company: PHDs Co.
777 Emory Valley Road
Suite B
Oak Ridge, TN 37830
Title: Fast, Low Noise Photodetectors for Nuclear Physics
Summary: The proposed project aims to investigate a new detector technology that will have far reaching implications in fundamental scientific studies as well as commercial applications. It will be useful in diverse fields such as physics research, homeland security, medical imaging, and astronomy.

Title: Next-Generation Readout Electronics and Sensor Subsystem for nEDM
Company: STAR Cryoelectronics, LLC
25-A Bisbee Court
Santa Fe, NM 87508
Title: Magnetometer for the Neutron Electric Dipole Moment Experiment
Summary: This project uses lasers and atomic physics to measure magnetic fields with high sensitivity. This capability will benefit DOE's fundamental research, but also has spin-off applications in medicine, mineral exploration, and homeland security.
TOPIC: DEACTIVATION AND DECOMMISSIONING OF FACILITIES AND SITE REMEDIATION IN THE DOE COMPLEX

Company:
NEI Corporation
400 Apgar Drive
Suite E
Somerset, NJ 08873

Title:
A New Class of Nanocomposite Treatment Media for Efficient Mercury Remediation

Summary:
A nano-particle based technology is being developed to advance the state of the art in mercury remediation in contaminated DoE sites, thereby leading to cost savings and reducing the time for remediation.

TOPIC: NUMERICAL SOFTWARE MAINTENANCE

Company:
Harmonia, Inc.
202 Kraft Drive
Suite 1000
Blacksburg, VA 24060-6747

Title:

Summary:
This effort will accelerate and facilitate the production of scientific simulation data in an era of dramatically increased processing speeds. It will develop approaches to scale mathematical tools and libraries to be accessible at the new computing speeds.

Company:
Tech-X Corporation
5621 Arapahoe Avenue Suite A
Boulder, CO 80303-1379

Title:
Sparse Algebraic Multigrid Preconditioners for High-Order Finite Element Systems

Summary:
The efficient usage of the DOE's massively parallel supercomputers maximizes the scientific insights that can be obtained over a given period of time. This efficiency is only possible with the continued improvements in the algorithms employed in today's complex computer models.

TOPIC: SCIENTIFIC VISUALIZATION AND DATA UNDERSTANDING

Company:
Kitware, Inc.
28 Corporate Drive
Clifton Park, NY 12065

Title:
Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling

Summary:
The proposed work will create software tools that enable collaboration for viewing, interacting, and analyzing large data sets across geographically separated work-sites.

Company:
Tech-X Corporation
5621 Arapahoe Avenue Suite A
Boulder, CO 80303-1379

Title:
Analyzing and Visualizing Next Generation Climate Data

Summary:
The Mosaic grids adopted by atmospheric and ocean climate models are causing severe problems to post-processing and visualization applications. We propose to develop software that will allow climate prediction tools to correctly interpret data on these novel grids.

Company:
VisTrails, Inc.
220 Chase Street
Salt Lake City, UT 84113

Title:
Provenance-Enabling DOE Visualization Applications
Summary:
In this proposal, we will develop the framework to capture and manage all the steps that are taken by a user interacting with existing scientific visualization systems. The result will be a complete audit trail of the computational processes that are required to reproduce an image or discovery.

Company:
ANGEL Secure Networks, Inc.
20 Godfrey Drive
Orono, ME 04473-3610
Title:
Control and Data Plane Security of High Performance Networks

Summary:
High performance networks which are used to support major scientific experiments cannot be protected against cyber attacks by conventional security techniques. This approach is a software system which uses secure networking techniques to protect the network from cyber attack with no loss of network speed, performance, or availability.

Company:
Reservoir Labs, Inc.
632 Broadway
Suite 803
New York, NY 10012-2614
Title:
High Performance Networks - Compilation and Optimization of Protocol Analyzers

Summary:
The volume and sophistication of cyber attacks on nationally critical infrastructure and defense systems is growing, and beginning to overwhelm our existing, reactive, low-coverage, cyber defenses. We propose to develop a new pro-active, high-coverage, defense technology based on new state-of-the-art compiler technologies.

Company:
Accelogic, LLC
609 Spinnaker
Weston, FL 33326
Title:
Enhancing Sca/LAPACKrc with Extremely-Fast Least-Squares Solvers for Heterogeneous CPU/FPGA Supercomputers

Summary:
This project will meet DOE's and the nation's rapidly increasing supercomputing requirements through software acceleration technology that will reduce execution times from hours to seconds for the important class of “least-squares” problems. This will enable breakthrough improvements in real-time medical imaging, faster and more accurate methods to find oil, and more reliable electric power grids -- among many other applications.

Company:
Reservoir Labs, Inc.
632 Broadway
Suite 803
New York, NY 10012-2614
Title:
Advanced Static and Dynamic Scheduling of HPC Applications on Petascale Computer Systems with GPU Accelerators

Summary:
Inexpensive Graphics Processing chips are a potentially very cost- and power-efficient engine for supercomputing that can accelerate advances for important problems that such as climate modeling, medical imaging, and energy exploration. What has been holding back GPGPUs until now has been programmability. This project will build programming tools to make GPGPU based supercomputing feasible.

STTR Project:
Company:
RNET Technologies, Inc.
240 West Elmwood
Suite 2010 Dayton, OH 45459
Title:
Creating Scalable Petascale File DriveSystems using Application-Aware Network Offloading

Summary:
Parallel file systems are required to access data on current and emerging supercomputers. Currently, these file systems have bottlenecks, which can severely affect many of the applications running on the expensive supercomputers. Hence, key components of a parallel file system must be optimized using advanced hardware and software solutions. In this STTR, we will accomplish these using a 10 Gigabit Ethernet “SmartNIC” that was developed on a prior DOE Phase II SBIR contract.
Common Component Architecture for Electron Cloud Accelerator Simulations

Summary:
A significant amount of public resources have been invested in the development of software tools for computational accelerator physics. Component-based software development provides tools and practices for reusing existing algorithms, code, and applications, and it would make more efficient use of taxpayer's money.

Schema-Based Environment for Configuring, Analyzing and Documenting Integrated Fusion Simulations

Summary:
To ensure safe and efficient future power production, fusion science needs comprehensive fusion device modeling. This project will develop user-friendly tools to configure, analyze, visualize, and optimize integrated fusion simulations on the Leadership Computing Facilities.

High-Throughput Ultra-Fast Tunable Filter for Multispectral Imaging

Summary:
A series of color pictures from specific target will improve detection and discrimination capability. This multi-color remote sensing is an enabling technology for security and military surveillance. The proposed filter will greatly improve the performance of this technology.

A Field-Portable Polarization Imaging System for Remote Sensing

Summary:
A high performance polarization imaging system covering from visible wavelength to mid-infrared wavelength will find broad applications in both government and commercial markets. A novel electro-optic material will be used to develop the imaging system, which offers highest electro-optical constant in the world, broad spectral band, high speed, and very low hysteresis. It will carry a tremendous commercial potential for the next generation of polarization imaging instruments.

H-PDLC Tunable Filter for Hyperspectral Imaging

Summary:
OPTRA, Inc. and Drexel University will partner to design, develop, and test a tunable wavelength filter using a new and novel liquid crystal based material. The filter will find application in monitoring systems for detecting Weapons of Mass Destruction (WMD).

Rapidly Tunable Optical Filter

Summary:
This project will develop a rapidly tunable wide field-of-view optical filter with flexible design parameters including
bandwidth and spectral range. The filter has numerous applications for remote sensing, environmental monitoring, and medical imaging.

Company: Polaris Sensor Technologies, Inc.
200 Westside Square
Suite 320
Huntsville, AL 35801
Title: Polariometry in Remote Sensing Applications to Enhance Signal-to-Noise Ratios, Man-made Object to Natural Background Material Contracts, and Provide Increased Image Stability in the Infrared Region
Summary: This project is developing an innovative infrared imaging system that forms images of infrared scenes using polarized light. Elements of the image that are not visible using un-polarized light are made visible and information about orientation of surfaces and objects can be obtained thereby enhancing the detection of objects of interest.

Company: Spectral Sciences, Inc.
4 Fourth Avenue
Burlington, MA 01803-3304
Title: Full Spectral Signature Simulation Models for Chemical Releases
Summary: Technologies enabling remote detection, identification and quantification of trace gases in the atmosphere provide critical information for uncovering activities associated with proliferation of weapons of mass destruction. Accurate chemical release signature and sensor performance models will be developed for this problem and, more generally, for environmental monitoring.

TOPIC: RADIATION DETECTION

Company: CapeSym, Inc.
6 Huron Drive
Suite 1B
Natick, MA 01760-1325
Title: Detached Growth of Nuclear Detector Materials
Summary: This program seeks to develop high quality, low-cost materials for radiation detectors used in homeland security, medical diagnostics, and nuclear industry.

Company: Radiation Monitoring Devices, Inc.
44 Hunt Street
Watertown, MA 02472-4699
Title: New Approach for Lanthanide Halide Crystal Growth
Summary: The proposed project will investigate a novel detector technology that will be very useful in nuclear non-proliferation monitoring. It will also be useful in other scientific studies (such as high energy physics and space research) as well as commercial applications (such as oil exploration, medical imaging, and non-destructive evaluation).

TOPIC: SEISMIC DETECTION

Company: Eentec
1100 Forest Ave
Kirkwood, MO 63108
Title: Seismic Detection Mini Seismometer
Summary: A miniaturized high-resolution low cost seismometer will assist DOE tasks in providing detection systems for nuclear treaty monitoring under tight budgets, allow valuable scientific information for earthquake analysis, offshore oil undersea exploration, and structural engineering leading to better public safety, modifications of building codes, reinforcement of building, bridges, dams, etc.

Company: Michigan Aerospace Corporation
1777 Highland Drive, Suite B
Ann Arbor, MI 48108-2285
Title: Real-Time Optical MEMS-Based Seismometer

Summary: Monitoring of low-yield nuclear detonations is difficult with current seismic monitoring systems which are bulky, expensive, and difficult to deploy rapidly. The probability of detecting low-yield tests drops significantly if the explosion is below one kiloton. The proposed effort will develop a seismometer that is compact, ultra-sensitive and easily deployed for immediate monitoring of man-made seismic activities in critical locations. In addition, the seismometer will have applications in oil prospecting and mining activities, as well as space exploration, surveillance, and a variety of scientific studies, including volcano and earthquake monitoring research.

Company: Silicon Audio, LLC
2124 East 6th Street, Suite 105
Austin, TX 78702

Title: Micro-Seismometers via Advanced Meso-Scale Fabrication

Summary: This project will develop a state-of-the-art miniature seismometer to address nuclear explosion monitoring needs of the DOE / NNSA. The technology combines optical elements with small mechanical components micro-fabricated on silicon.

Company: Symphony Acoustics, Inc.
103 Rio Rancho Blvd. NE
Suite B-4
Rio Rancho, NM 87124-1441

Title: Laser Interferometric Miniature Seismometer

Summary: We are developing a sensor that is a critical strategic tool in the fight against nuclear proliferation. This seismic sensor will be 1/50th the size of existing components, and will be easily deployable around the globe.

TOPIC: HIGH ENERGY PHYSICS DATA ACQUISITION AND PROCESSING

Company: Your File System Inc.
255 W 94TH Street PHB
New York, NY 10025

Title: YFS, a High Performance Global File System That is Backward Compatible with AFS

Summary: AFS is a distributed file system which is widely deployed throughout the High Energy Physics research community, however, it can no longer satisfy the demands placed upon it by growth. Unfortunately, migrating to alternate solutions has proven difficult or impossible. The goal of this project is to develop a new commercially available global file service. This will allow AFS users to achieve productivity improvements without costly and painful transitions between incompatible systems.

TOPIC: ACCELERATOR TECHNOLOGY FOR THE INTERNATIONAL LINEAR COLLIDER

27 Industrial Blvd. Unit E
Medford, NY 11763-2286

Title: Development of Reduced-Cost Helium Vessels for ILC Cavities

Summary: The International Linear Collider (ILC) promises to open new frontiers in high energy physics. This can only happen if the machine is affordable to the worldwide community. This project will address one of the cost drivers for the 16,000 superconducting cavities and has the potential to save $130M for the project.

Company: DULY Research Inc.
1912 MacArthur Street
Rancho Palos Verdes, CA 90275-1111

Title: Voltage Droop Compensation for High Power Marx Modulators

Summary: The proposed voltage droop compensation scheme provides a simple, reliable and cost effective method to allow a high voltage Marx modulator to produce a flattop voltage pulse as specified in the ILC project. Other accelerator facilities which need long pulse modulators will also benefit from the results of this project.
Company: AdValue Photonics Inc
4585 S. Palo Verde Road
Suite 405
Tucson, AZ 85714
Title: High Efficiency Fiber Laser for Advanced Accelerator
Summary: Department of Energy needs single polarization mode-locked high power 2 micron fiber laser for advanced laser electron accelerator. This project is for the development of a new fiber laser by using innovative specialty fiber to meet Department of Energy’s demand. This fiber laser can also be used for materials process, remote sensing, and bio-medical applications.

Company: Alameda Applied Sciences Corporation
626 Whitney Street
San Leandro, CA 94577-1116
Title: A Novel Gas Jet for Laser Wakefield Acceleration
Summary: Laser wakefield accelerators could drastically reduce the size and cost of particle accelerators for medical, research, and industrial applications. The valve developed in this SBIR program is an enabling technology to allow accelerators to be built that can operate at higher repetition rates. Such valves may also be used to conduct research on traumatic brain injury, leading to better head protection gear for soldiers and civilians alike.

Company: Euclid TechLabs, LLC
5900 Harper Road #102
Solon, OH 44139
Title: Development of a Diamond-Based Cylindrical Dielectric Loaded Accelerating Structure
Summary: We plan to develop a manufacturing technology for artificial diamond tubes to be used in dielectric loaded accelerating structures. These diamond structures are expected to attain record high accelerating gradients. The results will be also applied to next-generation research accelerators and high power microwave systems as well as to medical equipment development.

Company: FAR-TECH, Inc.
3550 General Atomics Court
Building 15, Suite 155
San Diego, CA 92121
Title: Novel Linac Structure for Electron and Proton Accelerators
Summary: This project will build and test a novel linac accelerating structure. The design could be a breakthrough as it significantly simplifies the structure and is thus cost effective.

Company: FM Technologies, Inc.
4431-H Brookfield Corporate Drive
Chantilly, VA 20151-1691
Title: Micro-Pulse Amplified Electron Injector
Summary: This program will develop a radio-frequency accelerator that will provide a high power source suitable for many applications. Of particular importance are medical cancer therapy linacs, sterilization, and research injectors.

STTR Project:
Company: Muons, Inc.
552 N. Batavia Avenue
Batavia, IL 60510
Title: Pulsed Focusing Recirculating Linacs for Muon Acceleration
Summary: Fast acceleration techniques are being developed for future Neutrino Factories and Muon Colliders using the high gradient
RF cavities that are being developed for the International Linear collider. A Muon Collider would provide a path back to the energy frontier for the US high energy physics program.

Company:
Particle Beam Lasers, Inc.
18925 Dearborn Street
Northridge, CA 91324-2807

Title:
Study of a Final Cooling Scheme for a Muon Collider Utilizing High-Field Solenoids

Summary:
This scheme for cooling muons should facilitate muon colliders, muon radiography for medical and homeland security applications, and condensed matter studies, nanotechnology, and other technologies. The advancement of superconductor technology should extend the field range of nuclear Magnetic Resonance Imaging magnets.

Company:
RadiaBeam Technologies, LLC
13428 Beach Avenue
Marina Del Rey, CA 90292-5624

Title:
The Micro Accelerator Platform: A New Particle Source for Industrial, Medical, and Research Applications

Summary:
High-energy X-rays are currently used in cancer therapy, non-destructive testing, and cargo inspection, however, the equipment used to produce them is large and expensive. This project will produce a device using nanotechnology and manufacturing methods from the microelectronics world that is 1000 times smaller and much less expensive than current systems. This transformative technology could bring new hope to cancer sufferers, a better way to inspect our industrial products, and a new tool in baggage and container security.

Company:
Tech-X Corporation
5621 Arapahoe Avenue
Suite A
Boulder, CO 80303-1379

Title:
Service-Oriented Architecture for Next Generation, Large-Scale Accelerator Control Systems

Summary:
This project will develop a Service Oriented Architecture for next-generation, large-scale accelerator control systems to reduce the cost in developing and maintaining these control systems. The approach will produce more cost-effective and efficient scientific effort as more science of higher quality can be produced.

Company:
Tech-X Corporation
5621 Arapahoe Avenue
Suite A
Boulder, CO 80303-1379

Title:
Inverse Cyclotrons for Intense Muon Beams

Summary:
Intense muon beams are sought for their role in future scientific programs at a number of national labs. We will develop a software suite to perform detailed end-to-end simulations of inverse cyclotron for use in generating such intense muon beams.

Company:
Applied Pulsed Power, Inc.
2025 Dryden Road
P.O. Box 348
Freeville, NY 13068

Title:
Optically Pumped High Power Solid State Switch

Summary:
New switching components are needed to improve electrical efficiency and reduce costs for electric power generation, transmission, and for applications such as radar. This project will develop a faster and lower cost switch than what is currently available.

Company:
Haimson Research Corporation
3350 Scott Boulevard
Title: Gradient Enhancement Research for Linear Accelerator Structures
Summary: The enhancement of accelerating gradient would significantly advance radio-frequency linear accelerator technology and would have a positive impact on the design of future linear colliders and accelerators for commercial applications.

Company: Omega-P, Inc.
258 Bradley Street
New Haven, CT 06510-1106
Title: High-Power Microwave Switch Employing Electron Beam Triggering
Summary: Progress in elementary particle high-energy physics depends on the evolution of technology to enable future machines to operate at higher energies than can be reached at present. The high-power microwave switches to be developed in this project are to allow tests of structures to sustain higher electric fields without breakdown, thus enabling operation at higher energy, and also opening up commercial applications with improved clinical accelerators, for example.

Topic: HIGH-FIELD SUPERCONDUCTOR AND SUPERCONDUCTING MAGNET TECHNOLOGIES FOR HIGH ENERGY PARTICLE COLLIDERS

Company: Muons, Inc.
552 N. Batavia Avenue
Batavia, IL 60510
Title: Multi-Purpose Fiber Optic Sensors for HTS Magnets
Summary: Optical fiber based sensors are being developed to monitor and protect HTS super conducting magnets used for particle accelerators, fusion reactors, and magnetic resonance imaging.

Company: SCI Engineered Materials, Inc.
2839 Charter Street
Columbus, OH 43228
Title: Homogenous BSCCO-2212 Round Wires for Very High Field Magnet
Summary: The Department of Energy's National Laboratories require higher field magnets than currently available for high energy physics experimentation. This project addresses this need by improving the properties of ceramic high temperature superconductors by defining powder processing conditions for BSCCO-2212 powder that improves the superconducting properties of wires made with these materials.

Company: Shear Form, Inc.
207 Dellwood Road
Bryan, TX 77801
Title: Manufacture of Fine-Grained Niobium Bar
Summary: Decreases in the starting grain size of bulk Nb for production of high-current fine-filament Nb3Sn superconductors will be achieved by an innovative and cost effective materials processing method. The result will be lower cost Nb3Sn superconductor wire with improved performance in high magnetic fields. With this improved Nb bar, it will be possible to manufacture higher field magnets for high energy physics applications such as particle accelerators.

STTR Project:
Company: Supercon, Inc.
830 Boston Turnpike
Shrewsbury, MA 01545-3386
Title: Insulation Materials and Methods for Bi2212 Magnets
Summary: The goal of the program is to reduce the cost and risk associated with producing high temperature superconducting magnets for high energy physics, while also improving performance. Material development to advance the technology of high temperature, high field superconductors is necessary for maintaining US leadership in the fields of materials science, biomaterials, and high energy physics.
Company: SupraMagnetics, Inc.
214 Canal Street
Plantsville, CT 06479
Title: A New Multifilament Round Wire with Enhanced Bi2212 Texture for HEP High Field Magnet Applications
Summary: A new economical Bi2212 superconductor with advanced performance will be developed for high field magnets utilized in high energy physics research, fusion machines, and MRI and NMR instruments for the general benefit of the public.

TOPIC: HIGH ENERGY PHYSICS DETECTORS

Company: Allcomp Incorporated
209 Puente Ave
City of Industry, CA 91746
Title: Thermally Conductive, Carbon Foam Material for Constructing Silicon-Based Detector Structures
Summary: Development of thermally conductive, exceptionally lightweight carbon foam will offer silicon based detector designers new low-cost opportunities for solving complex thermal and structural issues. This carbon foam is the current answer to high temperature heat exchangers for both military and commercial aircraft; replacing aluminum, titanium, or Inconel as core materials.

Company: Coating Technology Solutions Inc.
36 B Munroe Street
Somerville, MA 02143-2009
Title: High Performance Diamond Detectors
Summary: Man-made diamond will be developed to improve discovery of fundamental laws of physics and to improve radiation survival rates for cancer patients.

TOPIC: ADVANCED TECHNOLOGIES FOR NUCLEAR ENERGY

Company: Analysis and Measurement Services Corporation
9111 Cross Park Drive
Building A
Knoxville, TN 37923
Title: Wireless Sensors for Predictive Maintenance of Rotating Equipment in DOE’s Research Reactors
Summary: This project will result in marketable technologies to optimize the operational safety and economy of Department of Energy’s research reactors. This will be achieved through implementing advanced technologies for the maintenance of rotating equipment.

STTR Project:
Company: Luna Innovations Incorporated
1 Riverside Dr.
Suite 400
Roanoke, VA 24016
Title: Low Draft Temperature Sensor Gen-IVCircle Simulation Test Planning and Hardware Development
Summary: The goal of the program is to reduce the cost and risk associated with producing high temperature superconducting magnets for high energy physics, while also improving performance. Material development to advance the technology of high temperature, high field superconductors is necessary for maintaining US leadership in the fields of materials science, biomaterials, and high energy physics.

TOPIC: SEARCH, DISCOVERY, AND COMMUNICATION OF SCIENTIFIC AND TECHNICAL KNOWLEDGE IN DISTRIBUTED SYSTEMS

Company: Deep Web Technologies, LLC
301 North Guadalupe
Suite 201 Santa Fe, NM 87501
Title: Enabling Comprehensive One-Stop Access to World-Wide Scientific and Technical Research
Summary:
There are thousands of sources of quality science information available that most scientists and researchers are not aware they exist. We will create a clearinghouse that will make these information sources discoverable and accessible leading to an acceleration of scientific discovery.

Company:
Edgewater Technology Associates, Inc.
3528 Worthington Blvd., Suite 301
Urbana, MD 21704
Title:
Search Enhancement with Adaptive Thesaurus and Ontology Resources
Summary:
This research project aims to improve the methods for creating, organizing, maintaining and using scientific and technical reference thesauri and semantic knowledge bases for the purpose of improving the quality and usefulness of search results from scientific and technical databases.

Company:
Information International Associates, Inc.
1055 Commerce Park Drive, Suite 110
Oak Ridge, TN 37830-8028
Title:
Interactive Peer-to-Peer Scientific Communication in the Digital Library Environment
Summary:
There is a need for DOE scientists conducting similar research to be able to identify each other and to quickly collaborate on ideas. This research explores the concept of using Web 2.0 or social networking technologies in an electronic scientific library environment to facilitate these activities.

TOPIC: POWER GENERATION TECHNOLOGIES FOR COAL-BASED POWER PLANTS

Company:
Celltech Power, LLC
131 Flanders Road
Westborough, MA 01581-1031
Title:
Liquid Tin Anode Direct Coal Fuel Cell
Summary:
The development of clean, efficient, coal power generation technology is fundamental to USA energy security. The Liquid Tin Anode Fuel Cell can provide low cost, high efficiency power from coal while enabling capture of up to 90% of the CO2 produced. This project will address key risks to the commercialization of this technology by thoroughly testing the core fuel cell components.

Company:
Precision Combustion, Inc.
410 Sackett Point Road
North Haven, CT 06473
Title:
Compact and Streamlined Oxy-Syngas Reheat Combustor
Summary:
In support of national goals for clean coal utilization and addressing global climate change, development of combustors for electric power generation is required. The Phase II effort will experimentally demonstrate the performance of a novel reheat combustor with success leading to commercialization of power generation capability with efficient carbon sequestration.

Company:
R&D Dynamics Corporation
15 Barber Pond Road
Bloomfield, CT 06002
Title:
Foil Gas Bearing Supported High Temperature Cathode Recycle Blower
Summary:
Large multi-megawatt size Solid Oxide Fuel Cell based Integrated Gasification Fuel Cell power plants are being developed and planned for the near future. This project will develop a reliable, oil-free and affordable cathode and anode recycle blower, capable of 850 oC, which will improve the energy efficiency of multi-megawatt size fuel cell systems and thus will help our nation use its most abundant fossil fuel resource in an environmentally friendly manner while creating jobs.

TOPIC: INNOVATIONS TO REDUCE ENVIRONMENTAL IMPACT AND INCREASE EFFICIENCY IN COAL POWER PLANTS
Company: CyboSoft, General Cybernation Group, Inc.
2868 Prospect Park Drive
Suite 300
Rancho Cordova, CA 95670-6065
Title: Intelligent Actuation Control Using Model-Free Adaptive Control Technology
Summary: This proposal can result in an intelligent actuation control solution that is critical to controlling future energy plants that can deliver maximum-energy-efficiency, near-zero-emissions, fuel flexibility, and multi-products. This solution can help the U.S. strengthen its energy independence, security, and movement towards a cleaner environment.

Company: Trimeric Corporation
P.O. Box 826
Buda, TX 78610
Title: Selenium Speciation and Control Technologies in Sulfate-Rich Wet FGD Systems
Summary: This research will develop new technology to reduce selenium water discharges from coal-fired electric power plants and to reduce selenium environmental releases from power plant byproducts. The public will benefit from reduced exposure to selenium from the use of an abundant domestic energy source.

Company: Titanova, Inc.
12724 Penridge Drive
Bridgeton, MO 63304
Title: Novel Diode Laser Cladding of High Temperature Alloys for Used in Ultrasupercritical Coal-Fired Boilers
Summary: This project will develop and certify direct diode laser systems and processes for cladding future ultrasupercritical and existing coal-fired boiler fireside components. It will result significant improvements in clad material properties and fabrication costs, resulting in an increase in boiler efficiencies, thus reducing utilities pollution and carbon dioxide emissions.

Company: Combustion Resources
1453 West 820 North
Provo, UT 84601-1343
Title: Demonstration of Advanced Technology for Surface Processing of Oil Shale
Summary: Clean, economic development of vast western oil shale reserves can supplement unreliable, costly imported petroleum and improve national security. Proposed work will demonstrate, at pilot plant scale, a patent-pending oil shale process offering near zero carbon dioxide emissions and low water usage, while utilizing inexpensive hydrogen to upgrade shale oil. Work includes plans for process scale-up and commercial application.