SING II MIE DOE Review

Lessons Learned from Beamline Construction

John Cleaves

December 9 - 11, 2008
Outline

• Lessons Learned from Dec 07
• Lessons Learned from Dec 08
• SING II Implementation
Lessons Learned Session in Dec 2007

SNS Instrument Projects: Lessons Learned

John Haines
ORNL
Dec 7, 2007
Lessons Learned Session in Dec 2007

- Project Approaches
- Level of Technical Risk
- Lessons Learned:
 - Project Management
 - Technical Requirements
 - Cost
 - Schedule
 - Risk Management
 - Engineering
 - Procurement
 - Installation
 - Project Completion
Design Criteria Document

- Fundamental building block in NScD project management
- Defines technical scope, interface requirements, codes and standards, … for a particular instrument
- Used to satisfy EIR/CD-2 requirement - “EIR Item 6. System Functions and Requirements document”
- Essential for cost and schedule management/control
- This is a living document that is updated as needed by the subproject team – it provides a way of documenting the initial baseline and subsequent changes and evolutions during project execution
 - Change control is defined in the PEP
 - Used to define/confirm project completion
Technical Requirements

- Document all significant technical requirements with the baseline
 - DCD serves this purpose
 - Use disciplined change control process to make changes

- Editorial comment: Use of this process is probably the biggest factor in whether an instrument will meet its cost and schedule goals or not
Schedule

- Sub-project leaders (Instrument Scientist and Lead Engineer) must own the schedule
 - Define logic and durations and assess monthly status
 - Project Controls Staff advise and implement
 - Drives team to make timely decisions

- Purchase high risk items earlier than needed
 - This will obviously give more time for items with schedule uncertainty
 - For cost risk items, it gives the project more time to deal with the problem if an item comes in with a significantly higher cost
 - Negotiate with bidders – cost drivers, reduced performance
 - Reduce non-essential scope elsewhere
Cost Estimating

- Realistic escalation (not required to use OECM guideline)
 - Use ORNL salary planning information for internal labor
 - Use appropriate escalation rates for purchases

- Systematic process for contingency evaluation

- Feedback from recent history
 - Compare estimate to real costs from similar instruments (design, installation, procurement of similar equipment)
Risk Management

- Identify high risks and pay attention to their mitigation strategies
 - Concentrate on the critical few; don’t get caught-up in the process and dwell on low risk items

- Bottoms-up input from sub-project leaders and the rest of the team

- Update regularly (quarterly seems to work)
Engineering

- Grouping instrument engineers together increases efficiency, uniformity, and helps share good ideas and practices
 - Shared designs
 - Common equipment minimizes spares inventory and improves maintenance and installation
 - Must create an atmosphere where mistakes and their lessons learned are shared
Procurements

- Economy of scale
- Foreign procurements/exchange rates – try to get in fixed dollars
- Phase funding to optimize BA usage
- Involve all relevant technical staff before awarding contract
- Limited vendors with limited capacities
 - Work closely with vendors
 - Regular weekly conferences from the beginning
- Dedicated procurement staff
- Large vendor base
Engineering/Installation Interface

- Have installation drawings and documents complete before starting installation
 - Complete scope description before starting
 - Avoid verbal orders – RFI process

- Realistic alignment tolerances

- Set liberal tolerances on concrete shield blocks or in equipment that interfaces with concrete structures
 - If needed, fill-in gaps (grout or steel shot in socks) and/or allow for alignment adjustment
Installation

- Local management of installation is essential
 - Allows leveling of resources
 - Prioritization of schedule
 - More efficient use of materials
 - Allows use of construction professionals familiar with local labor rules and market
 - Improves safety – consistent rules and cadre of trained staff and labor force
 - Better engagement by labor force
 - Facilitates feedback to design team
Lessons Learned – Dec 2008

- Why me?

- SING II is largest user of lessons learned, so SING II should gather them

- If SING II gathers them, delivery has occurred
Method

- Log kept throughout the year
- Specifically asked for SEQUOIA lessons learned
- Drafted document and sent it to large distribution
- Received comments and additions
- Revised the document and sent to large distribution to “get the word out”
- The effort was well received and considered worthwhile
Project Management

- Schedule Block Diagram greatly aids in understanding the construction/installation sequence

- Advanced Procurement Approvals – plan as part of CD-2 baselining process

- IRR Procedures – start very early. It helps identify needed design features and makes preparation for the IRR more efficient
Construction

- Tolerances – understand what is important and what industry can do
- Construct Cave Equipment At Separate Location – while cave is being built
- Get Installation Group and Survey and Alignment group involved in the design early
Procurement

- Plan early and get procurement involved early
- Use the Advanced Procurement Plan form as a guide
Design

- Shielding –
 - Define and understand requirements well
 - Generate design early
 - Test stack shielding block cans

- Integrate PPS and Non-safety cable pulls into one design package

- Mechanical Interferences – have all designs go through lead engineer and generate “composite” drawing showing equipment locations

- Get the appropriate subject matter experts involved early

- Design equipment (hutches, mezzanines, etc) so that less DB work is needed to install and pull cable

- Documentation – complete and file it as the design progresses (not at the end of the project)
Use Integrated Design Review (IDR) to Drive the Project Forward

- IDR team should represent “stakeholders” – those having to live with the design

- Instrument System Safety Committee (ISSC) should participate in IDR

- IDR should be held early – prior to CD-3

- Nearly all neutronics analysis and all major equipment should be in 3-D model for IDR

- ISSC review of shielding design should occur prior to IDR

- Review of Instrument Operation should be key element of IDR
Improve Shielding Fabrication

• Re-examine stacked shielding gap requirements and fabrication methods

• Have Survey and Alignment determine as built conditions and put data in 3-D model

• Re-examine having vendor fabricate blocks and pour shielding so that stack test can be done at vendor site
System Integration
(Listed in Order they should be generated)

- Process & Instrument Diagram
- Design Criteria Document
- Baseline Debut
 - Address Instrument Operation as well as performance
- Neutronics Analysis Configuration Drawing
- CD-4 Parameters Measurement Drawing
- PPS Sweep Plan
System Integration

- Naming & Numbering – Use only one
- 3-D (Pro-Engineer) Model – show the following early
 - All items on the P&ID
 - Survey and Alignment data showing As-built conditions
 - Shielding (this requires neutronics calculations)
 - All major electrical panels, cable trays, and conduit
 - All major piping
 - Exclusion zones
 - Mezzanines, walkways, etc that determine instrument operation
- Conduct workshops with applicable stakeholders (electrical, survey and alignment, sample environment, detectors, etc)
- Conduct constructability review
- Get ISSC involvement (and approval where possible) early
System Integration – Integrated Design Review (IDR)

- Use it to confirm (and if necessary, drive) that the integration has occurred
- Address instrument operation
- Review team should be stakeholders (those that have to live with the design)
- Review team should include an ISSC member
- Neutronics calculations should be completed and presented
SING II Implementation
SING II Implementation

- Naming – A common equipment list/WBS dictionary has been generated and common names are used where applicable. Consistent naming is stressed daily.

- Schedule diagrams exist for VISION, MANDI, and CORELLI.

- P&ID’s and DCD’s exist for VISION, MANDI, and CORELLI – USANS P&ID is in progress.

- Baseline Debut has been used for VISION, MANDI, and CORELLI and will be used for USANS.

- Neutronics Analysis Configuration Drawings exist for VISION, MANDI, and CORELLI.

- CD-4 Parameters Drawing exists for VISION and MANDI.
 - They have been used to conduct a workshop with Survey and Alignment to confirm that tolerances are reasonable and can be measured.

- Survey and Alignment As-Built data is in the 3-D model for VISION, MANDI, and CORELLI.
SING II Implementation

- Preliminary Design Review (PDR) for MANDI and CORELLI stressed instrument operation

- IDR on VISION checked the System Integration well. Same method (and team where applicable) will be used on remaining instruments

- Workshops with stakeholders and constructability reviews worked well on VISION and will be continued on remaining instruments

- Appropriate early procurement planning has occurred on VISION and will be continued on remaining instruments

- VISION and NOMAD are working with Reuter-Stokes to fabricate detectors – which will ease the strain on SNS staff

- VISION used a functional specification to have Swiss-Neutronics aid in the guide “system” design
SING II Implementation

- Schedules include a 3 month Integrated Systems Testing activity to allow for PPS, motion control and detector testing after construction
- Integration of PPS and Non-safety electrical cable pulls will be pursued in Jan 09
- Development of “composite” drawings will be pursued in Jan 09
- Plans are in place to build VISION cave equipment at location away from Target Building – similar plans will be generated for remaining instruments
Summary

- Lessons learned have been gathered
- Lessons learned have been distributed to those needing them
- Lessons learned are being implemented on SING II