

REFRACTORY COATED SILICA AEROGELS: ISOTOPE CATCHERS FOR THE FAST RELEASE OF UNSTABLE LIGHT NUCLEI

Sponsor: Department of Energy Phase II Contract Number: DE-FG02-07ER86315 Project Officer: Dr. Manouchehr Farkhondeh

> Contractor: InnoSense LLC 2531 West 237th Street, Suite 127 Torrance, CA 90505

Principal Investigator: Uma Sampathkumaran, PhD Telephone: (310) 530-2011 E-mail: uma.sampathkumaran@innosense.us

September 13, 2010

Outline

Introduction

- About InnoSense LLC (ISL)
- Our Capabilities and Core Technologies
- Phase II Project Goals
- Relevance to the Nuclear Physics Program
- Schedule and Deliverables
- Project Progress
- Summary/Future Plans
- Acknowledgments

About InnoSense LLC

InnoSense LLC occupies a 7,500-square-foot facility in a business park in Torrance, CA, 15 miles south of Los Angeles International Airport.

- Established in 2002 through private funding
- Limited Liability Company based in California
- Growth-oriented high-tech company
- Mantra: Innovation
- Eighteen employees including six PhDs, six engineers, two MBAs

InnoSenseLLC

Key Personnel

Kisholoy Goswami, PhD, President and Chief Technology Officer

- Eleven relevant U.S. patents
- First commercial fiber-optic sensor
- Optical sensors
- Raising private capital

Uma Sampathkumaran, PhD, Director of Research

Ormosils/sol-gels /aerogels
 Metal oxide thin films
 Nanomaterials-based sensors and nanocomposite coatings

Tania Betancourt, PhD, Research Scientist

- Polymer synthesis
- Biomaterials

- Polymeric nanoparticles
- Drug delivery
- Cancer imaging and diagnostics

David Michael Hess, PhD, Research Scientist

- Photoelectrochemical conversion of CO₂ to methanol
- Templating by phase separation of polymers
- Materials engineering and testing
- Biomaterials

hnoSense LLC

Key Personnel (continued)

Thomas William Owen, Jr., PhD, Research Scientist

- Electrochemical and microgravimetric sensors/biosensors
- Functional materials for sensor applications
- Supramolecular assemblies

Rashmi Dalvi, PhD, Research Scientist

- Organometallics
- Organic synthesis
- Heterocyclics
- Catalysis

Mr. Corey Selman, BS, MBA, Senior Product Engineer

- Commercialization
- Process chemistry and product scale-up
- Engineering design (five patents)
- Product packaging

Mark Slaska, BS, MBA, Technology Transition Specialist

- Commercialization
- Coating formulations
- Process engineering
- Organic synthesis

InnoSense Core Capabilities

Nanomaterials and Coatings

- W-coated silica aerogels and porous refractories as catchers for rare isotope production/separation
- Carbon aerogels for catchers for molecular species (¹²C¹⁵O, ¹²C¹⁵O₂)
- Nanocomposite anti-fog coatings for protective facemasks
- Cryogenic insulating nanocomposite foams
- Flame-retardant materials for fabrics/structural composites
- Nanoparticle-based contrast agents for bioimaging

Sensors

- Chemical Sensors Optical detection of gases and liquids
- Physical Sensors Colorimetric temperature dosimeter
- Biosensors Electrochemical detection of biomarkers

Energy Conversion Devices

- Photoelectrochemical conversion of CO₂ to methanol
- Nanostructured photovoltaic devices

InnoSense LLC Technologies

Nanomaterials and Coatings

Anti-Fog Coatings

InnoSense LLC

Flame-Retardant Treatments for Textiles

Features:

- Zero halogen content
- Phosphorus-based small-molecule and polymeric materials
- Protection offered by formation of insulating char layer
- Great process ability from solution
- Treatment durability ensured by covalent binding of flame retardant
- Applications in upholstery, bedding, protective wear, and structural components as coatings/composites

Treated polyester fabrics maintain original color and flexibility

Vertical Flame Propagation Studies in 34% Oxygen

Cotton

Polyester

Images shown at beginning of test (left), during test, and at time of ignition removal (10 sec) or end of fabric afterflame/afterglow (right).

September 13, 2010

InnoSenseLLC

CryoPoreTM Insulation Foams

- Open cell structures suitable for a variety of applications and insulating environments.
- Hydrophobic surfaces reduce water uptake.
- Polymeric foam scaffold is configurable to a variety of mission needs.
- Compression resistant.
- Controlled porosity for tunable thermal insulation.
- Engineered for flexibility in terrestrial and space applications.

InnoSense LLC Technologies

Sensors

Multi-Analyte Optical Sensor Array

Colorimetric and fluorescent indicators on a multi-analyte optical sensing platform

Features/Benefits

- Versatility to customize sensors based on end use
- Reliable high-sensitivity sensors
- Lightweight, portable, and battery-powered
- Cost effective and user-friendly

hnoSense LLC

Colorimetric Temperature Dosimeter

ChronoTherm[™] time– temperature indicator

- Passive visual indicator with optoelectronic readout capability
- Reversible and irreversible records of thermal changes
- Temperature range 0–200°F for most applications
- Temperature-induced color changes
- No external power supply or batteries necessary

Slide 13

MH27 Add hyphen: High-Temperature michael, 9/13/2010

InnoSenseLLC

Nanowire-Based Chemical Sensors and Biosensors

APPLICATIONS

- Diagnostics and prognostics
- Biotech and pharmaceutical
- Industrial process control
- Contamination detection and remediation
- Food and beverage quality/safety

FEATURES

- Highly sensitive
- Array-formattable
- Samples analyzed within seconds to minutes
- Customizable for chemical and/or biological analytes
- Low power requirements and small size
- Cost-effective production

ISL has successfully developed nanowire sensors for

- ✓ Alzheimer's Disease biomarkers
- ✓ Cancer-related biomarkers
- ✓ Carbon dioxide
- ✓ Chemical simulants

InnoSense LLC Technologies

Energy Conversion Devices

hnoSenseLLC

Direct Conversion of CO₂ to Methanol

Innovations

• Inexpensive processing to lower electrode production costs.

• Modified titanium oxide surfaces broaden visible absorption for increased photoefficiency.

 Solar powered conversion of a green house gas to a useful end product.

• Sequestration technique for carbon dioxide capture.

STTR Phase II Project Objective

Optimize fabrication of refractory nanoscale materials (tungsten (W)coated aerogels and refractory ceramic membranes) with a high degree of porosity to be used in catcher mode during radioisotope production.

Background on ISOL Target Materials

Isotope Separation On-Line (ISOL) used to generate radionuclides

Spallation of heavy targets by high-energy protons beams

- **Target** Fast liberation of the radioactive nuclei in large amounts of target
- Combined with Ion Source ion beam preferably of isotopes of only one chemical element
- Must be dense enough to stop energetic beam porous enough to allow rapid diffusion of radionuclides to the accelerator source
- Targets heated to > 2000°C to increase diffusion rates

Currently used materials

- SPIRAL at GANIL, Caen, France —Solid graphite target and varying projectile (heavy ions)
- Refractory target materials like Ta or Nb foils or compressed powders of TiC, SiC
 - Diffusion time is limiting factor (sample thickness, grain size ~ 10–100 μ m)
 - Release time from foils or powders scale as a square of the thickness or grain size
 - For $T_{1/2}$ of ~ 500 ms, diffusion losses can be high, aerogels could constitute a breakthrough
- HRIBF, RVC foam, 200 μm pores 100 μm coating for useful target density
- CERN, Geneva, Anodic alumina membranes—Large number of stacked foils
- LBNL SRI, Carbon aerogel coated in pores of RVC foam pore size 20 nm

Justification

Meso- and macroporous catcher materials expected to have stopping power ~ 1000 times of He gas catcher

- Longer ranged light isotopes and isotopes with relatively large energy spread
- Essential for light ions like ¹¹Li
- **Productive for** ^{6,8}He which have zero efficiency in the He gas catcher

Phase II Technical Approach

Three types of porous refractory catcher materials targeted

- 1. Nanoporous tungsten (W)-coated silica aerogels
 - Silica aerogel fabrication InnoSense LLC
 - Atomic layer deposition (ALD) of W in the pores of the silica aerogels and their characterization — Energy Systems Division at Argonne
- 2. Nanoporous ordered zirconia and hafnia foils
 - Electrochemical anodization of Zr and Hf foils InnoSense LLC
- 3. Macroporous random-porosity yttria-stabilized zirconia disks
 - **Tape casting methods for mass fabrication InnoSense LLC**

Evaluation of porous refractory materials as potential catchers — Physics Division at Argonne

- High-temperature vacuum stability of porous refractory materials
- Thermal conductivity, porosity after high-temperature treatment
- Beam-line studies SIRa, GANIL

Phase II Target Performance Goals

- Targeted pore size of > 30 nm to 100 nm
- Silica aerogels
 - Density > 3 g/cc, open porosity; stable up to 2000°C
- Nanoporous ordered oxides of zirconia or hafnia
 50% of theoretical density, stable between 1500 and 2000°C
 - Random-porosity yttria-stabilized zirconia
 - 50% of theoretical density, stable between 1500 and 2000°C
- Test catchers for online measurements of release times
 Thickness of ~5 g/cm²

Benefits to the Nuclear Physics Program

Beneficial features of nanoporous refractory materials used in catcher mode

- Potential replacement of helium gas catcher for light ions like ¹¹Li that need more stopping power.
- Potential catchers for isotopes produced via heavy-ion fragmentation.
- In the catcher mode, thermal conductivity is less relevant since the beam power is deposited in the thermally separated production target irradiated with heavy ion beams.
- No radiation damage when used in catcher mode since only secondary radioisotope beams impinge on it.
- Potential targets for spallation induced by light ions in a standard ISOLtype facility.
- Extend the reach of all ISOL-based radioactive beam facilities to very short-lived isotopes by greatly reducing the release time of rare isotopes from solid target materials.

hnoSenseLLC

The InnoSense–Argonne Project Team

- Dr. Uma Sampathkumaran—Principal Investigator, Technical Direction; Silica Aerogel Fabrication/Characterization
- Dr. Thomas W. Owen—Fabrication of Ordered Porous Zirconia and Hafnia Foils; Materials Characterization by SEM
- Mr. Ray Winter—Fabrication of Porous Refractory Yttria-Stabilized Zirconia by Tape Casting Methods
- **Mr. Mohammad Mushfiq**—Materials Processing and Optimization
- Dr. Jeffrey Elam, Energy Systems Division, ANL—Technical Direction for Atomic Layer Deposition (ALD) of tungsten (W) on silica aerogels
- Dr. Anil Mane, Energy Systems Division, ANL—W-ALD processing and characterization of W-coated silica aerogels
- Dr. Jerry Nolen, Physics Division, ANL—ANL Technical point of contact; Coordinate efforts to evaluate W-coated aerogels for beam-line isotope separation measurements
- Mr. John Green, Physics Division, ANL—Characterize thermal stability of Wcoated aerogels in vacuum at high temperatures (1500–2000°C); thermal conductivity; porosity after high-temperature tests.

Schedule and Deliverables

			Quarters after Project Initiation							
Task ID/Description				Year 1			Year 2			
				2	3	4	5	6	7	8
3000	Major Phase II Tasks									
	Task 1. Refine aerogel and ALD processes to optimize catcher properties							いたい		
	Task 2. Develop nanoporous refractory oxides by anodization and tape casting						25.00			
	Task 3. Evaluate the thermal stability and thermal conductivity of the porous catchers when heated to ~2000°C									
	Task 4. Evaluate prescreened test samples in the GANIL beam line									
	Task 5. Evaluate Phase III commercialization potential						1. 10 1. 10 1. 10			
	Milestones									
	1. Optimized nanoporous refractory materials developed.	1						1		
	2. High-temperature evaluation of porous catchers completed.									
	3. Nanoporous refractory catchers evaluated in beam line.									
	4. Phase II engineering project successfully implemented.									
4000	Data/Deliverables				•	•		•	•	<u> </u>
	Annual progress reports					•				
	Final Report									

Phase I - Tungsten-Coated Aerogels

Closed pores after ALD
 Pore size < 20 nm
 Density after W-ALD ~3.52 g/cc

Silica-Polymer Aerogel

Open pores after ALD
 Pore size 10 – 1000 nm
 Density after W-ALD ~2 g/cc
 Open pores after 1300°C

hnoSenseLLC

Phase II - Aerogels Before and After W-ALD

All aerogels were intact after W deposition

hnoSenseLLC

Aerogel Density: Initial vs. Final Density

Fractured disks of silica aerogels coated by W-ALD

- Significant density change after W deposition for all aerogels
- With 15 ALD-W cycle we can achieve target density of aerogel as high as 5 g/cc
 Initial aerogel density influences final aerogel density

Tungsten-Coated Monolithic Aerogels

■ Lower density for W-coated monolithic aerogel ~2.3/g/cc

InnoSenseLLC

Overall Aerogels Summary (SEM Magnification 100k)

Sample ID	As received	3 W-ALD cycles	5 W-ALD cycles	10 W-ALD cycles	15 W-ALD cycles	Comments
PE635k-4						 Increase in feature size Aerogel getting denser
R1-3						 Increase in feature size Aerogel getting denser
R2-2						 Increase in feature size Aerogel getting denser
R3-6	244 EX4C 10.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 / 1.0 /					 Increase in feature size Aerogel getting denser
R4-5						 Increase in feature size Aerogel getting denser

hnoSense LLC

ALD-W on Anodic alumina membranes

- 60 microns thick
- 0.2 microns pore size
- 13 mm diameter
- 25 nm W coating
- Density 3.32 g/cc

Challenges

- Very fragile
- Bowing of membranes
- Cracking/shattering during cool down
- Pre-annealing Al2O3 @ 800C in Ar prevents this

Ordered Porous Materials

hnoSense LLC

Electrochemical Anodization of Zirconium and Hafnium Foils

ZrO₂ 250 μm foils Ordered pores Size: 30–60 nm

HfO₂ 250 μm foils Ordered pores Size: 30–90 nm

Random Porous Materials

Random Porous Tape Cast Monoliths

SEM of hot-pressed monolith

- Pore size ~0.4–4 μm
- Particle size ~0.2–0.6 μm

Tape cast laminated monoliths

- Green density ~2.76 g/cc
- Fired density ~2.22 g/cc
- Estimated porosity ~63%

High-Temperature Performance of Aerogels

Phase I - W-coated silica aerogels demonstrated stability up to 1300°C in vacuum

- Heated in a bell jar
- Out gassing at 400°C and 1100°C
- Retained open porosity
- Remained intact
- Phase II Monoliths of W-coated silica aerogels
 - Heated to 1500°C
 - Some out gassing below 1500°C.
 - Remained intact
 - Weight loss equal to weight of original aerogel
 - SEM shows crystalline material
 - XRD indicates bcc W
 - Custom tantalum boats for heating to higher temperatures (1800-2000°C) required

High-Temperature Performance of Aerogels

XRD

SEM after 1500°C

Summary / Future work

- W-coated silica aerogels 5 g/cc and 2.3 g/cc
 - Use supercritical CO₂ extraction to process aerogels for open surface pores to improve density of monoliths
- W-coated anodic alumina membranes ~ 3.3 g/cc
 - Several hundreds of W-coated membranes stacked to achieve desired density
- Hafnia or Zirconia membranes ~ 60% porosity
 - Same as above, fragile
- Tape cast disks ~ 65% porosity
 - Open porosity at high temperature yet to be established
- High temperature stability tests at 1800-2000°C pending
- Beam line tests pending

Acknowledgments

Program Officer: Dr. Manouchehr Farkhondeh

Department of Energy for sponsoring this Phase II work and the new Phase I on Carbon aerogels