Development of a Low Frequency Superconducting RF Electron Gun

Contract DE-FG02-07ER84861

Terry Grimm

September 2010

Outline

- Collaboration
- Concept
- Scientific justification
- Design
 - electromagnetic
 - mechanical
- Fabrication
- Test results and plans

This DOE Nuclear Physics SBIR project has been conducted by Niowave in collaboration with Brookhaven National Lab (Ilan Ben-Zvi, head of Accelerator R&D in the Collider-Accelerator Department)

We have developed a quarter wave superconducting cavity as a high brightness electron source... taking a cavity design well known in the heavy-ion community and adapting it for use to accelerate electrons.

at low frequency, the accelerating gap looks like a constant field to the short electron bunch – minimal distortion

not necessary for the cathode to be mechanically connected to the superconducting structure – great flexibility in cathode types and potential for electron source R&D

superconducting cavity has low dissipated power even for very high average beam currents

Scientific justification

free-electron lasers

- for hard x-rays, requires exceptionally bright electron beam
- electron beam must be focused inside the growing light wave

Compton backscatter x-ray sources

 spectral brilliance (x-rays per area, per solid angle, per bandwidth) is directly proportional to the electron beam brightness

electron beam

- the high-brightness electron beam has a low "temperature" electron paths can be made nearly parallel
- mingling the electrons with the RHIC beam at the same velocity "cools" the heavy ion beam by collisions, leaving that beam brighter
- requires lots of electrons (1 to 5 nC) in a dense bunch

		The operation frequency has
frequency (MHz)	112 <	been chosen as a harmonic
V ₀ (MV)	1.6	multiple of the RHIC ring
E _{cathode} (MV/m)	11.5	frequency.
E ₀ (MV/m)	4.0	
E _{peak} (MV/m)	30.2	
B _{peak} (mT)	57.6	
B _{peak} /E _{peak} (mT/(MV/m))	1.91	
R _{res} (nOhm)	5	
R _{BCS} (nOhm)	98.9	parameters from
$\mathbf{P}_{\mathbf{d}}\left(\mathbf{W}\right)$	5.4	E 30 Superfish calculation
T(K)	4.2	contraction of the second seco
Q	$3.7 \cdot 10^{9}$	
G(Ohm)	41	
R/Q (Ohm)	130	dius f
TTF	0.99	E 0
distance along beam axis (cm)		

For operation at 4.2 K, the cavity is surrounded by a custom-designed cryomodule.

Steps throughout the fabrication process insure the quality of the superconducting niobium surface.

stamping and machining of niobium parts electron beam welding

inner surface preparation by acid etch

Fabrication [2]

After the acid etch, a high pressure rinse with ultrapure water is performed in a cleanroom at Niowave. Then the cryomodule is assembled – we build the

cryomodule is assembled – we build bottle with the ship already inside!

Measured room-temperature frequency and Q value show good agreement with the design simulations.

- With input and pickup antennas very weakly coupled, cavity Q = 4700
- Calculated value for resistance of roomtemperature niobium based on skin depth at 112 MHz = 8.5m Ω (good agreement with literature)

Resonant frequency = 112.8 MHz (Superfish gives 112.3 MHz with cathode)

- Cavity cooled in its cryomodule to liquid helium temperature
- SRF performance tested using a solid-state amplifier
 - Q vs. electric field
 - resistance to multipacting/field emission
- Test photoelectron bunches generated with ultraviolet laser

Finished cryomodule

ready for cryogenic tests, fall 2010

14