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| Outline

* Motivation
— Diamond-amplifier cathode concept & types of experiments

— Diamond-based beam line detectors

* Models developed in VORPAL to simulate diamond amplifier &
detector physics:
— Secondary electron generation

— Electron-phonon and hole-phonon scattering for simulation of charge
transport, charge impurity scattering

— Verification of the developed models for the underlying physics

— Comparison of simulation results to data from transmission-mode
experiments

— First simulations of a diamond-vacuum system and electron emission

e Results

* Summary
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/ . .
u g’i Motivation

* A new diamond-amplified cathode was proposed recently with the

potential to provide fugh quantum efficiency sources with very long lifetime for
generation of fugh-current, high-brightness, and low emittance electron beams.

* Experiments have demonstrated the potential of the concept but the
optimal design and parameters of operation are still being investigated.

* We are developing models, within the VORPAL 3D particle-in-cell code,

to simulate physical properties of diamond-amplified cathodes and
detectors.

* QOur goal is to explore relevant parameters via computer simulations to
provide additional understanding how to produce diamond-amplified
cathodes and detectors with optimal physical properties.
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Overall Diamond-Amplifier Concept -
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Schematic diagram of a secondary emission enhanced photoinjector (SEEP)

Diagram courtesy of Triveni Rao, BNL.
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~ Electron generation and gain is measured in
transmission and emission mode experiments.
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\

up to 10 keV Electron
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voltage

|II >

DC Transmission-mode Experiment
diagram courtesy of Xiangyun Chang, BNL

* Electron current transmitted 1n response to primary electrons 1s
measured.

* Metal contacts are applied to opposite surfaces of diamond to

apply an external field and collect generated charge carriers. .



& Electron emission from diamond was BROOKHAVEN
measured recently.

* Maximum electron gain of 40 was demonstrated recently in
emission-mode experiments (Xiangyun Chang et al., to be

published 1in Phys. Rev. Lett.):
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K

1.

Secondary electron
generation

Charge transport

Electron emission
from diamond
surfaces with varying
electron atfinity

There are three main phases to model. -
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N~ New capabilities in the VORPAL code for
modeling diamond properties.

* To enable end-to-end simulations of diamond-amplified
electron emitters we developed algorithms to model:
— Inelastic scattering of electrons (primary & secondary) and holes
for generation of electron-hole (e-h) pairs

— Elastic scattering
* at higher energies (> ~10 eV)
* due to 1onized impurities

— Inelastic scattering with phonons

— (Code infrastructure for electron emission from diamond and a
model for testing.

 VORPAL prowvides full electro-magnetic push of charged
particles between scattering events.

* We implemented a general Monte-Carlo algorithm to handle
charge particle scattering processes.
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I ;* Secondary electron-hole generation

* 'The differential scattering cross
section for electron-hole pair
generation are calculated in

VORPAL using the approach

from:

Ziaja et al., Phys. Rev. B 2001 & 2002,
and J. Appl. Phys. 2005.

* PBoth, electrons and holes with
E,. > E;(05.47 eV)
can generate electron-hole
pairs.

* We implemented the Ashley
and 'Tanuma-Powell-Pen (1PP)
optical models for impact
lonization scattering.
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/ Calculated Inelastic Mean Free
Paths (IMFPs) agree with results from a
previous implementation.

* We compared our IMFPsto ¢ The only input to these models is the

results from Ziaja et al. energy loss function (ELF) determined
(2005-6), experimental data from optical experiments
for E > 300 eV and band 1P ‘
structure calculations at low T Ashley
- -+ Ashley, modified ELF
E. 104 SUURURIIIPIITURI | P WY R —_— Ashley (ZlaJa 2005)
— TPP

e The TPP model 1s in better

agreement with band ~
structure data at low E than <

- -+ TPP, modified ELF |
fitting formula (Ziaja 2006)

102 I
the Ashley model.
° The Optical models are 1n TOLE R NN N g
Watanabe ,
agreement for I > 300 eV. (Ziaja 2005) N
TPP (Ziaja 2005)
0 ‘ ‘ ‘
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/  Scattering with phonons is needed to model
charge transport in diamond

We implemented models from Jacoboni & L. Reggiani, Rev. Mod. Phys.
(1983) for both electron-phonon and hole-phonon scattering.

Emission and absorption of phonons are predominant at low

energy (£ < 10 eV).

Impact 1onization dominates high energy scattering, £ > 50 eV.

Our algorithm 107 : : : : :
automatically 1016k __________________ __________________ ____________
switches electrons 1015 fe .................. .................. .................. ..................
and holes from S IR R 5=/ N B
impact ionization - incastc, TPP2 |
to phonon - et BLE
scattering using an v o e
empirical rule. 10 T |
1011%—2 105—1 1(30 1(31 107 107 104

E (eV) 11/23
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Drift velocities obtained with the phonon
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models show agreement with previous data.

e Temperature dependence and comparison to available data for
drift velocities of electrons and holes:
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VORPAL provides results on the average

NATIONAL LABORATORY

energy to generate an electron-hole pair

* Results from from different models for impact 1onization — the TPP
model shows better agreement with experimental data.

* Qur results agree with

previous simulations % 20

(Ziaja et al. 2005 & ?é 1o 44{4 .......... . T

2006). g I8 e ]
e The values from the TPP E 7l _____________ — - g g ?;};te}i’l%s-(leif)vc)u:z;ff4

model are within ~10 % 16} . TR 50 cwor

of recent experimental é 15k OOOQ{

data but depend on the Eﬁ b .....................................................................................

cutoff energy for % E] B ____________________________________________________________________________________________________

switching to phonon B 12| g
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Energy of primary electron (eV)
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& Comparison with previous results on the

average energy to generate an el.-hole pair.

* Initial model (Klein, 1968) estimates it as function of the gap energy
and the characteristic optical phonon energy via:

e = (14/5) E, + rhwg

* However, it predicts about 17 eV which 1s markedly higher
than recent experimental measurements that are in the range

from 12.8to 13.8 eV.

* Results have been reported (including experimental

theoretical, and computational studies) that range from 9.8 eV
to 17 eV.

e Qur result with the TPP model and the 11.9 eV cutofl are

within 10 % of the most recent 13.5 eV measurements. .



ﬁ Simulation parameters for modeling BROOKHAVEN

transmission mode experiments

* Primary electrons enter the 3D simulation box with an mmitial velocity
along the positive x-axis from the x=0 surface side at t = 0 s.

e 'The whole simulation box represents diamond at 300 K.

o Primary electrons create electron-hole (e-h) pairs in high energy
inelastic scattering processes.

« Sufhiciently energetic secondary electrons and holes (with energies
higher than the energy gap E, = 5.47 eV 1n diamond) also undergo
such 1nelastic processes and thus generate additional e-h pairs.

o The e-h pair generation 1s essentially complete in a few 100 fs.

o LElectrons and holes are switched to use a phonon scattering model
when their energy becomes less than 11.9 eV within the first 400 {s.

o« The metal contact at the x = 0 surface was modeled with a sink
boundary condition — all particles moving to a position with x < 0 1n

a time step were removed from the simulation. o
5
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Evolution of electrons and holes generated
from primary electrons

* The data1s for 2.7 keV primary electrons in 3 MV/m applied field.
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* We estimate electron gain by counting the number of free electrons

How do we determine electron gain from

the simulations data?

that drift away from the metal contact surface at x=0.

* 'The higher rate of phonon emission for holes 1s slowing down the hole
cloud expansion and likely leading to the smaller loss of holes

compared to electrons at earlier times (< 1 ps).
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Comparison to experimental data

* Simulated electron gain shows overall qualitative agreement with
the gain measured 1n transmission mode experiments.
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& Over two orders of magnitude charge gain Riaeaat

can be achieved.

* Both the transmission mode experiments and the simulations indicate
that two orders of magnitude charge gain for primary electron energy

higher than 2.5 keV.

Max electron gain (N,)
e
o
o

%.5 1.0 1.5 20 25 30 35 40 45 5.0

Primary electron energy (keV)
* We are considering to implement a model tor the energy loss of

primary electrons in the metal contacts (due to 1nelastic scattering) to
better understand the experimental data. 19123



K We recently developed capabilities for

electron emission simulations.

* Electron emission from diamond was recently demonstrated 1n
emission-mode experiments (X. Chang ef al., accepted for
publication in the Physical Review Letters).

* We are developing new VORPAL code capabilities to enable

simulation of electron emission from diamond.

* These simulations rely on a new feedback algorithm in VORPAL
that allows a specified potential across a diamond-vacuum system
to be established and maintained.

* 'The current code infrastructure we have developed allows us to:

— model reflection of charge carriers at a diamond-vacuum interface

— testing of electron emission using a constant probability rate
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X Summary

e 'The currently implemented models for diamond allow us to investigate:

— Secondary electron and hole generation for different primary electron
energies

— Relaxation of the electrons to the drift state due to scattering with phonons
and charge transport

— The eflects of fully taking into account the space-charge eftects by solving
Maxwell equations with VORPAL
 VORPAL simulation results using these models have allowed better
understanding of transmission-mode and collection efhiciency
experiments conducted in BNL.

* We are currently considering the addition of detailed models for
electron emission, trapping, electron afthnity, and metal contacts.

* The new modeling capabilities developed under this SBIR project
are being investigated for use in the aerospace industry.
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