The NP Low-Energy User Facilities

David Radford ORNL Physics Division

SBIR/STTR Meeting Gaithersburg, MD October 25, 2011

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Overview

Have heard overview talks on RHIC and TJNAF; I will discuss *low-energy* user facilities

- The physics
- The NP LE accelerator user facilities
 - ATLAS (ANL)
 - The future FRIB (MSU)
- Examples of experimental equipment
 - The GammaSphere and GRETINA gamma-detector arrays

The Physics: Intellectual Drivers

- How did the matter that makes up the visible universe come into being, and how does it evolve?
 - Nature of building blocks (quarks+gluons, hadrons, nuclei, atoms,...)
 - Cosmic evolution of visible matter
- How do the building blocks of subatomic matter organize themselves, and what phenomena emerge as they do so?
 - Nature of composite structures and phases
 - Origin of simple patterns in complex systems
- How have hidden forces shaped the properties of matter?
 - In search of the New Standard Model
 - The nucleus as a laboratory for testing fundamental symmetries
- How can we best use the unique properties of nuclei and technologies developed in nuclear physics to benefit society?
 - Unique opportunities for applications

Examples of techniques & measurements

Nuclear Structure and Reactions

- Coulomb excitation in regions of magic and doubly magic nuclei
- In-beam gamma-ray spectroscopy
- Decay spectroscopy (many kinds)
- Identification and detailed study of crucial single-particle states
- Systematics: The evolution of single-particle states and nuclear shells
- Synthesis and study of heavy elements

Nuclear Astrophysics

- Masses, decay properties, and reactions for r-process nuclei
- Direct reactions on rp-process nuclei
- Structure studies of specific states that affect reaction rates

Societal applications and benefits

- Surrogate reactions for astrophysics, energy, and stockpile stewardship
- Isotope production for medicine and industry
- Detection techniques for medicine, homeland security
- Accelerator Mass Spectrometry

What we need for a typical experiment

- An accelerator facility to provide a beam of ions
 - Beam may be composed of unstable (radioactive) ions
 - Beam energy can be low (~100 keV) or high (~ 3 to 100 MeV per nucleon)
- A target (for higher-energy beams)
 - A small fraction of the beam ions react with target nuclei to make something of interest
- Detectors and associated electronics to study that "something"
 - Gamma-rays, light charged particle, fragments, heavy residuals, ...
 - HPGe detectors
 - Double-sided strip detectors (Si or Ge)
 - Scintillators, with either PMTs or photodiodes
 - Magnetic spectrometers
 - Gas counters
 - Ion traps
 - Many more
- Digitizers, computers, data storage, and software

The Facilities

User Facilities

- Encourage and support experiments proposed by and/or involving outside users (labs, universities, international)
- Beam time is allocated based on proposals judged on scientific merit
- The Argonne Tandem-Linear Accelerator System (ATLAS) at Argonne National Laboratory
- The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University

 The Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory

ATLAS: The world's first SC ion accelerator

18 Quarter-wave SC resonators

ATLAS Beams

31 Different Isotopes ~ 18% beam time for Radioactive Beams

ATLAS: The CARIBU project

Californium Rare Ion Breeder Upgrade

- Will provide beams of neutron-rich radioactive ions from ²⁵²Cf spontaneous fission
- $T_{1/2}$ = 2.6 years 3.1% fission branch

CARIBU: A Californium Fission Source for ATLAS

CARIBU Platform

Isobar Separator

CARIBU Status:

- Hardware complete & installed
- Subsystem commissioning complete
- 100 mCi ²⁵²Cf source installed in March 2011
- Mass measurements with CPT (Penning trap) have begun
- Ongoing: Beam tests through isobar separator, charge breeding of radioactive beam

Planned Upgrades to ATLAS for the next 5 to 10 years

⇒ Higher energy, higher intensity

- New RFQ (250 keV/u, q/A ≥1/7)
- New quarter-wave SC resonators
- Upgrade liquid helium system
- Replace CARIBU ECR by EBIS
- Remove Tandem accelerator

- New cryomodules
- Reconfiguration of ATLAS
- New stable-beam ECR source
- Recoil separator for in-flight RIBS

Facility for Rare Isotope Beams (FRIB)

- A DOE-SC National User Facility to be built at MSU
- Scheduled for construction starting in 2012, completion in 2018-2020
- Rare isotope production via projectile fragmentation and in-flight fission
- Driver accelerator: Heavy-ion linac
 - $E/A \ge 200$ MeV for all ions
 - Beam power = 400 kW
 - Use of existing NSCL; enables pre-term science, fast start of FRIB science
- Fast, stopped, and reaccelerated beams

FRIB concept

FRIB Beams

Gain factors of 10-10000 over operational facilities

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Driver Linear Accelerator

Reaccelerated Beams at FRIB

ReA3 in operation by 2013

- 0.3-3.2 MeV/u for uranium
- 0.6-6.2 MeV/u for ⁴⁸Cr
- Option to upgrade to 12 MeV/u for uranium, >20 MeV/u for light ions

Experimental Areas and Equipment

Experimental Equipment

- None in FRIB scope
- Equipment at NSCL (existing or under development) » S800, SeGA, MoNA-LISA, LENDA, ...
- Equipment available in the community and movable
 - » GRETINA/GRETA, ANASEN, CHICO, Nanoball....

FRIB is On Track, Nearing Construction

Conceptual design	completed 9/2010	(CD-1)
 Preliminary design CD-2/3A (civil) review in April 2012 	2010-2012	
Civil construction begins	2012	
 Final design CD-3B (technical) review in 2013 	2012-2013	
Technical construction begins	2013	
Integration/commissioning	2016-2018	
Early project completion	2018	
Project completion	2020	

Examples of Experimental Equipment

Gamma detectors

- Usually arrays of HPGe detectors or scintillators
- In-beam or out-of-beam

Recoil and light-ion detectors

- Magnetic spectrometers and separators
- Gas counters
- Si detectors (usually DSSD or position-sensitive)
- Scintillators

Electronics

- Waveform digitizers, ASICs, preamps
- Digital pulse processing

All of these have benefitted greatly from DOE-SC SBIR/STTR program. Improvements in instrumentation greatly extend the physics reach of the facilities.

The Gammasphere Array

108 Compton suppressed HPGe spectrometers

Dedicated Dec 1995

Absolute photopeak efficiency ~ 0.09 at 1.33 MeV Peak-to-total ratio ~ 0.55

Compton Suppression

– Improves the peak-to-background ratio $(P/T \sim 0.2 \rightarrow 0.55)$

But Compton suppression also leads to losses in efficiency

- In Gammasphere, only 50% of the solid angle is covered by Ge
- Compton-vetoed events are thrown away; it would be better to precisely determine the energy and use those events

Gamma-ray Tracking

3D position sensitive Ge detector

Resolve position and energy of all interaction points

Determine scattering sequence

- Large n-type HPGe detectors
- Outside surface electrically segmented into 36 contacts
- Digital pulse processing to get sub-segment position resolution
- Process all signals (hit segment and neighbours)
- Need a sophisticated signal decomposition algorithm
- Group interactions;\ determine scattering sequence from Compton formula
- Reject incomplete-energy events on basis of chi-square

GRETINA: Gamma-ray tracking detector array

- 28 highly segmented Ge detectors
- All associated electronics and software
- Construction completed March 2011
- Currently running commissioning experiments at LBNL
- One-fourth of the full sphere (GRETA)

GRETINA detector crystals

- 28 highly segmented Ge detectors, in seven groups of four
 - 36-fold segmentation (6 azimuthal, 6 longitudinal)
 - Tapered irregular hexagons
 - 2mm (RMS) position resolution
- Total coverage ~1π steradians

Signal decomposition

Position of interaction points determined by signal decomposition

Signal decomposition

- Determine, in near-real-time, the *number*, positions, and energies of gamma interactions in the crystal
- Required as input for gamma tracking
- Uses a set of pre-calculated basis pulse shapes
- Position resolution is crucial; dominates energy resolution, efficiency, and peak-to-total ratio
- Speed is also crucial; determines triggered count-rate capability of array
- Met GRETINA requirements of σ < 2mm, and processing of at least 20,000 γ/s

SBIR/STTR Program

Some of the many crucial contributions of the SBIR/STTR program to low-energy user facilities are illustrated by talks at this meeting:

• Instrumentation, Detection Systems and Techniques

- Adelphi, RMD, PHDs*, Tech-X*

Electronics Design and Fabrication

- XIA, Blue Sky

Software and Data Management

- Tech-X

Accelerator Technology

- Alameda Appl. Sciences, FM Technologies, Saxet

* Collaborations on Majorana & GRETINA

Acknowledgements

Material or slides were provided by

- Michael Carpenter, Richard Pardo (ANL)
- Georg Bollen, Thomas Glasmacher, Brad Sherill (MSU)

Backup Slides....

The Physics

Nuclear Structure: Properties of nucleonic matter

- Many-body quantum problem (mesoscopic quantum science)
- Structure far from stability (neutron-rich, proton-rich, or super-heavy)
- Structure at high excitation energy and/or high angular momentum
- Competition and interplay between collective & single-particle behaviors
- Exotic nuclear shapes

Nuclear Astrophysics: Nuclear processes in the universe

- Energy generation in stars
- Nucleosynthesis in stars, novae, and supernovae
- Properties of neutron stars; EOS of asymmetric nuclear matter

Tests of fundamental symmetries

• Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

• Bio-medicine, energy, material sciences, national security

Production Target Facility and Fragment Separator

- High radiation and high power densities pose technical challenges
- Self-contained target building to keep most-activated and contaminated components in one spot
 - Remote handling to maximize efficiency
- High-power targets for light and heavy primary beams
 - R&D on multi slice graphite target promising approach
- Fragment separator to separate primary beam and select rare isotope beam
 R&D on radiation resistant magnets
- High-power beam dump to intercept
 - unreacted primary beam
 - R&D on rotating water-filled drum concept and alternatives

Stopped Beams at FRIB

Beams for precision low-energy experiments, and for reacceleration

- Linear gas stopper
- Cyclotron gas stopper
- Solid stopper
- Phase 1 (by 2011), two momentum compression lines
 - MSU linear cryogenic gas cell and ANL gas catcher
- Phase 2 (after 2012):
 - One linear gas stopper
 - Cyclotron stopper (funded as NSF-MRI)
 - Solid-stopper/reionizer

Preliminary Civil Design Complete & Integrated with Technical Systems; Final Design Started

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Quadruple-Crystal Clusters

RIDGE National Laboratory

Signal Decomposition Algorithm

Hybrid Algorithm

•Adaptive Grid Search with Linear Least-Squares (for energies)

•Non-linear Least-Squares (a.k.a. SQP)

Status:

- Can handle any number of hit detector segments, each with one or two interactions (three interactions for single hit segment in the crystal)
- ✓ Uses optimized, irregular grid for the basis signals
- \checkmark Incorporates fitting of signal start time t₀
- Calculated signals are accurately corrected for preamplifier response and for two types of cross talk
- ✓ CPU time meets requirements for processing 20,000 gammas/s

Decomposition Algorithm: Fits

- Red: Two typical multi-segment events measured in prototype triplet cluster
 concatenated signals from 36 segments, 500ns time range
- Blue: Fits from decomposition algorithm (linear combination of basis signals)
 - includes differential cross talk from capacitive coupling between channels

Requires excellent fidelity in basis signals!

Scanning-table coincidence-data test

Evaluated positions (red) Collimator position (blue)

66 events

Position resolution: $\sigma_x = 1.2 \text{ mm}; \sigma_y = 0.9 \text{ mm}$

Auxiliary Detectors for GRETINA

For in-beam studies, gammas are emitted by fast-moving nuclei. The excellent position resolution improves the Doppler-shift correction, thereby giving much better energy resolution.

But to take full advantage of GRETINA at HRIBF and ATLAS requires new auxiliary detectors for charged particles and/or recoils; e.g.

- Forward-angle CsI array with high granularity
- CHICO-II for recoiling heavy ions (large-area gas avalanche counter)
- Recoil-distance ("plunger") apparatus that interfaces properly with GRETINA and with auxiliary particle detectors

The HELIOS spectrometer for light-ion reactions

2.35 m

Target

Novel spectrometer design, recently completed at ANL Superconducting solenoid with on-axis Si detectors Max. field = 3.0 T Position-sensitive Si array

Beam

NIM A **580**, 1290 (2007)

The X-array

- 5 clover detectors in a box geometry
- 64x64 mm, 160x160 DSSD