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Tech-X Corporate Overview

Tech-X Corp. is a software and R&D 

organization with more than 60 

employees, roughly 2/3 PhDs

We have multiple offices in the U.S.

Headquarters in Boulder, Colorado

Subsidiary in England:  Tech-X UK Ltd

http://txcorp.co.uk/

Resellers:  China, India, Korea and Taiwan

5621 Arapahoe Ave.

Boulder, CO 80303

http://www.txcorp.com



The VORPAL interface is rapidly improving:

http://www.txcorp.com/products/VORPAL/



VORPAL documentation improved & online:   
http://www.txcorp.com/products/VORPAL/

user_documentation/5.0_docs/index.html



V
O

R
P

A
L
 t

ra
in

in
g
 i
s
 a

 n
e
w

 e
m

p
h
a
s
is

:

h
tt
p
:/
/s

p
e
c
tr

u
m

.i
e
e
e
.o

rg
/w

e
b
in

a
r/

1
9
3
7
4
1
5



Coherent e- Cooling (CeC) is a priority for 

RHIC & the future Electron-Ion Collider

• 2007 Nuclear Science Advisory Committee (NSAC) Long Range Plan:

– recommends “…the allocation of resources to develop accelerator and detector 

technology necessary to lay the foundation for a polarized Electron-Ion Collider.”

– NSAC website:  http://www.er.doe.gov/np/nsac/index.shtml

• 2009 Electron-Ion-Collider Advisory Committee (EICAC):

– selected CeC as one of the highest accelerator R&D priorities

– EIC Collaboration website:   http://web.mit.edu/eicc

• Alternative cooling approaches

– stochastic cooling has shown great success with 100 GeV/n Au+79 in RHIC

• Blaskiewicz, Brennan and Mernick, “3D stochastic cooling in RHIC,” PRL 105, 094801 (2010).

• however, it will not work with 250 GeV protons in RHIC

– high-energy unmagnetized electron cooling could be used for 100 GeV/n Au+79

• S. Nagaitsev et al., PRL 96, 044801 (2006).    Fermilab, relativistic antiprotons, with g~9

• A.V. Fedotov, I. Ben-Zvi, D.L. Bruhwiler, V.N. Litvinenko, A.O. Sidorin, New J. Physics 8, 283 (2006).

• Cooling rate decreases as 1/g2 ;  too slow for 250 GeV protons

– CeC could yield six-fold luminosity increase for polarized proton collisions in RHIC

• This would help in resolving the proton spin puzzle.

• Breaks the 1/g2 scaling of conventional e- cooling, because it does not depend on dynamical friction



Amplifier of the e-beam 

modulation via High Gain FEL

Longitudinal dispersion for 

hadrons

Modulator:  region 1
(a quarter to a half of 

plasma oscillation)

Kicker:  region 2

Electron density modulation is amplified in the FEL and made into a train with duration of 

Nc ~ Lgain/w alternating hills (high density) and valleys (low density) with period of FEL 

wavelength . Maximum gain for the electron density of HG FEL is ~ 103.

Economic option requires: 2aw
2 < 1 !!!

Modulator Kicker

Electrons

Hadrons

l2
l1

High gain FEL (for electrons) / Dispersion section ( for hadrons)

Coherent e- Cooling:  Economic option

Litvinenko & Derbenev, “Coherent Electron Cooling,” Phys. Rev. Lett. 102, 114801 (2009).  

V.N. Litvinenko, RHIC Retreat, July 2, 2010



Motivation:   more realistic modulator 

simulations are required to reduce risk

• Non-ideal modulator simulations

– finite e- beam size  (full transverse extent;  longitudinal slice)

– first step:  Gaussian distribution in space;  zero space charge

– 2nd step:  equilibrium distribution with space charge

 constant, external focusing electric field (not realistic)

– 3rd step:  equilibrium distribution with realistic external fields

 no focusing (i.e. beam converges to a waist in the FEL)

– 4th step:  consider beams from electron linac simulations

 challenge is to convert PIC distribution to df macro-particles

• Wang & Blaskiewicz theory valid only for constant ne

• 1D1V & 2D2V Vlasov-Poisson implemented in VORPAL

– successful benchmarking of 1D1V results with 1D df PIC

– 3D simulations are only practical with df PIC



Project tasks & status

• After 1 year, funds are 40% expended

• 1)  Implementation of Vlasov-Poisson algorithm in VORPAL

– 90% complete:  Major refactoring of VORPAL to enable coupling of algorithms

• 2) Improve the df PIC algorithm in VORPAL

– Complete:  Works with variable density beams, open BCs for Poisson

• 3) Couple electron macro-particles from tracking code into VORPAL

– 50% complete:  Works for conventional PIC, not yet for df PIC

• 4) Simulate electron response to ions near the edge of the beam

– 40% complete:  Code/algorithms are working;  need to generate results.

• 5)  Simulate e- response to ions in presence of an undulator magnet

• 6)  Simulate multiple ions in realistic electron distribution

• 7) GENESIS 1.3 simulations of the FEL amplifier

– 40% complete:  Use of “clones” implemented for improved coupling.

• 8) VORPAL simulations of the kicker

• 9) Generalize parametric representation of the “coherent friction force”

• 10) Generalization of  VorpalComposer  to support CeC simulations

– 20% complete:  Improvements to GUI are essential for commercialization.



Papers & Presentations

• D.L. Bruhwiler, “Simulations of the modulator, FEL amplifier and kicker for coherent 
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Accelerator Conf. (2011).



Comparing df PIC, Vlasov & theory,

for Debye shielding in 1D

• both Vlasov & df agree w/ theory

 df is noisier & slower

- only df can scale up to 3D simulations

• similar results for Gaussian beam

- space charge waves are seen

- amplitude is small at ½ plasma period

Figures taken from 

G.I. Bell et al., Proc. 

2010 PAC;  

Theory is the 1D 

version of W&B’s 3D 

calculation.



Vlasov simulation results agree well with df PIC

(single ion in gaussian e- dist. w/ no space charge)

Black: 1/8 plasma period

Blue: 1/4 plasma period

Green: 3/8 plasma period

Red: 1/2 plasma period

• no theory available

- benchmarking Vlasov & df was helpful

• provides confidence in df PIC

- we can now move towards 3D



• We assume that the beam is close to an equilibrium 

solution which satisfies

• phase space density

• linear external focusing field (for a Gaussian beam)

• The perturbation satisfies

where

1D Vlasov equations for the beam density

[without space charge]
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• When space charge is included, the equilibrium solution 

must also satisfy a self-consistent Poisson equation

• Can no longer be solved analytically, but numerical 

solutions are readily calculated (Reiser, 5.4.4)*

• Assume velocity distribution is Gaussian

• A uniform-density beam generates a linear defocusing electric field

where  

1D Vlasov equations for the beam density

[with space charge]
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* Martin Reiser, “Theory and Design of Charged Particle Beams”, 2008



Vlasov compares well with df PIC

(single ion in 1D beam with space charge)

Black: 1/8 plasma period

Blue: 1/4 plasma period

Green: 3/8 plasma period

Red: 1/2 plasma period
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2D d-f Simulations of the Modulator;  Exponential 

beam (no space charge) is similar to constant density

constant density exponential density



3D df Simulations of the Modulator have begun, for a 

longitudinal slice w/ self-consistent space charge

3D Simulations include

• Entire beam (0.4mm in diameter)

• Equilibrium maintained by external focusing

• Gaussian velocity distrib.

Theory is from Wang and Blaskiewicz

• Constant e- density (out to infinity)

• No external fields

• kappa-2 (Lorentzian squared) velocity distrib.

1/3 plasma period 1/2 plasma period

Transverse variation of the density is shown;  e- beam is artificially narrow



Coupling modulator results to FEL simulations

is being explored with multiple approaches

3D modulator sim‟s via df PIC 3D sim‟s of high-gain SASE FEL amplifier

• Serious difficulty in coupling to GENESIS via bunching parameters:

- GENESIS creates specialized particle distribution

- bunching parameters are used to slightly modify initial longitudinal phases

- “bunching” is derived from sums over the df macroparticles

- this is expected to capture coherent density perturbations

- coherent velocity perturbations are lost

• We are implementing in GENESIS a recent idea [1], where electron 

macroparticles are paired with positron-like “clones”

- yields correct shot noise, by construction

- makes direct use of macroparticle distribution provided by other codes

- enables coupling of both velocity and density perturbations

[1] V.N. Litvinenko, “Macro-particle FEL model with self-

consistent spontaneous radiation”, unpublished (2002).



Present approach to control of shot noise

• Randomly distributed macroparticles yield artificially strong spontaneous 

radiation in FEL simulations, increasing shot noise by factor (Nmp)
1/2 

– power of spontaneous radiation goes up by factor Nmp

• Special seeding of macroparticles is used in GINGER and GENESIS

– WM Fawley, PRST-AB 5, 070701 (2002).

– 2M macroparticles seeded at equal intervals within the fundamental wavelength λ0:

– with zero bunching, correct spontaneous radiation through the Mth harmonic of the λ0

– physical shot noise & initial bunching are obtained by perturbing the initial phases, so 

that 



Alternate idea of „clone‟ macroparticles will 

enable direct 3D coupling from into FEL

• "positron" clone macroparticles are created for each electron, with 

precisely the same initial phase space coordinates

– weight/charge of macro-particles are set as follows

V.N. Litvinenko, unpublished (2002)

• In absence of FEL interaction, with sign of magnetic field switched, clone 

trajectories are identical to electron

• When a = 0, including FEL interaction, initial shot noise is zero

• When a = 1, physically correct shot noise is obtained

– FEL interaction results in separation of electrons and clones

– the bunching leads to induced radiation in the FEL 

• Induced radiation for λ0 and its odd harmonics is the same e-‟s & clones

– correct treatment of odd harmonics requires greater care

– OK for purposes of CEC simulations

and



The particle-clone pairs algorithm has been 

successfully implemented in GENESIS

• Clone macroparticles have been implemented

– GENESIS procedures for overwriting the input distribution are bypassed, can use 

distributions generated by RNG (no need for Fawley‟s algorithm)

– pass all basic tests like no lasing when a perfect quiet start distribution is used 

• Benchmarked clone-based simulations of 

SASE with RNG-generated distributions 

against GENESIS with internally generated 

distributions (with noise)

– varied the number of particles per slice, 

used uncorrelated energy spread for 

comparison 

– agreement at the 10% level (g ~ 2.2  0.2 

in clones runs compared to g ~ 2.4  0.5   

in original GENESIS 

– no N1/2 dependence of growth rate on the 

number of simulation particles 

Longitudinal phase space at exit from the undulator in 

simulations with the original (red) and modified, clone-based  

(blue) versions of GENESIS



• Major challenge is to consider very realistic e- beams

– first, remove the constant focusing field required for equilibrium

– find df PIC representation of beams from e- linac simulations

• Complete implementation of 2D2V Vlasov-Poisson

– allows flexible coupling with other algorithms for beams, plasmas

• FEL simulations, based on new modulator sim. results

– explore benefits of clone-based approach to coupling

• Commercialization

– look for contract opportunities in FEL modeling with GENESIS

– support VORPAL GUI development to improve sales

– coupling of VORPAL to GENESIS will help drive upgrade sales

– laser-plasma accelerator groups want to drive compact FEL light sources

Near-Term Future Plans
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