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Overall Program Goal

Development of a novel* ultrathin,
position-sensitive, micropattern gas detector
for single particle tracking of heavy ions with
fast timing and with low to at least medium

rate capability.

*plasma Panel Sensor (PPS)



Plasma Panel Sensor (PPS)

The PPS, conceived as a high-performance, low-cost, particle
detector, based on plasma-TV display panel technology.

Each pixel operates like an independent micro-Geiger counter,
activated by direct ionization in the gas, or indirect ionization
via a conversion layer.
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Both “open-cell” and “closed-cell” PPS devices based on direct
ionization are the primary focus of our research efforts.

Proposed ultrathin-PPS is based on a “grid-support” structure,
which is a hybrid between the “open” and “closed” cell
configurations.



PPS Detector Goals

UltraThin, ultra-low-mass, long life, inexpensive
- proposed: 27 um Glass (6.6 mg/cm?) substrates
— new added goal/task: 8 pum Mica (2.2 mg/cm?) substrates

Design to operate in both vacuum & ambient pressure environment

Hermetically sealed & rad-hard material structure
— no gas flow system & robust internal / external construction

Performance
— Pixel efficiency: = 100%
— Time resolution: =1 ns
— Position resolution: £0.5 mm
— Response range: = 1 Hz/cm? to at least 10° Hz/cm?
— Internal gas pressure operational range: <100 Torr

Primary Applications — Particle Tracking & Active Pixel Beam Monitors
— Research: Nuclear physics / high energy physics
— Medical: Particle beam therapy (NIH-National Cancer Institute)



Sources Successfully Detected

Cosmic-Ray Muons (= 4 GeV at sea-level)

Muon Beam: 180 GeV range (at H8-CERN for high energy physics)

Beta Particles (max. energy): 13/Cs (1.2 MeV), °°Sr (2.3 MeV), 1°°Ru (3.5 MeV)
Proton Beam: 226 MeV (proton beam cancer therapy & proton-CT)
Neutrons: Thermal neutrons (neutron scattering & homeland security)
Gamma-Rays: °°Co (1.2 MeV), 137Cs (662 keV), [can be gamma “blind”]

UV-Photons: “Black UV-lamp” with emission at 366 nm



Open-Cell PPS

(DOE-NP & NIH-NCI)



“Open-Cell” Commercial Plasma Panel

« Columnar Discharge (CD) — Pixels at intersections of
orthogonal electrode array

« Electrode sizes and pitch vary between different panels

glass
SnO, orNi .3 -1.27 mm cathodes

Discharge gap

dielectric 220 — 450 pm
] ] ] ]
+ + + + 4+ + Ni anode 0.8 — 1.27 mm

glass




15t Gen. “Open-Cell” PPS Structure

2.54 mm Electrode Pitch
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Source Moved in 0.1 mm Increments
(1 mm pitch panel)



Collimated B-Source Measurement (1%Ru)
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Collimated B-Source Position Scan (1°%Ru)
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Position resolution ~ 0.7 mm

Scan was in 100 um steps

— Linear Fit

slope = 0.999 + 0.003
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2" Gen. “Open-Cell” PPS Structure

0.60 mm Electrode Pitch
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Modified commercial PDP with 1.7 mm thick glass substrates
as PPS test panel, 3.9” diagonal, 40 x 160 electrode matrix
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Collimated B-Source Position Scan (%Sr)

Scan of the 0.60 mm electrode pitch panel in 100 um steps. Each point is
the Gaussian mean of the hit distribution. The slope is consistent with unity.
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Stability - Response to Cosmic Muons
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Closed-Cell PPS

(DOE-NP, DOE-HEP, NSF & BSF*)

*United States — Israel Binational Science Foundation

15



“Closed Cell” Microcavity Concept

Sense Lines

1.0x1.0x 2.0 mm
Metallized
Rectangular Cavities

T

Anode

Closed gas cell
individually quenched
by an external resistor

Gas Fill

Electrostatic
simulations
in COMSOL

Electric field a few MV/m
— gas breakdown
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“Closed - Cell” Microcavity Concept

Individual gas cells

Cathodes

Perspective view of a pixel array with gas channels. Metallized cathode
cavities on bottom plate with vias to HV bus. Anodes on top plate.
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1%t Gen. Microcavity-PPS Panel

Front View

Surface mount
guench resistors
on each cell
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Fill-Factor of 18% in 15t Generation
Microcavity Design (ceramic cover)
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Collimated B-Source Test Setup

Ne-based gas mixtures
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Typical Microcavity-PPS Signal Pulse

Similar in shape to “open-cell”
PPS, but smaller amplitude

(capacitance), less jitter, and
higher rate capability.
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Pixel Time Resolution - Jitter
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Src-BKG Rate (Hz)

Pixel Response vs. Gas Pressure
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Rate (Hz) / Channel
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Pixel Isolation

Hit rates for “collimated”
source over a single pixel
on RO line 6, for a nine (9)
channel, 23 pixel array.

Collateral hits are minimal:

Due to collimation/positioning

uncertainty of source and
substrate scattering.
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Pixel Efficiency (B-source)
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Hexcavity-PPS (2" Gen. Microcavity)

2.0 mm Hexagon Pixels, 70% Fill-Factor, 256 pixel panel (16 x 16 matrix)

Cavities fully populated:
256 surface mount
guench resistors

Glass Cover Plate
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Ceramic Back Plate
Front with hexagon cavities
and conductive vias (dot) to
Back side Quench resistors
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Position Scans

15t Gen Microcavity — 18% Fill Factor

Position scan over total panel - 63 pixels

-10000

-5000 0 5000 10000
X [um]

Fill-Factor increased from 18% to 70% from
1stto 2"d Gen. Microcavity-PPS design

90Sr beta-source with 1.0 mm collimator
Each pixel responds only when irradiated
No discharge spreading

2"d Gen Microcavity — 70% Fill Factor

Position scan over one-half of panel*

Y Position (steps)

5000

0 1000 2000 3000 4000 5000 6000 7000 8000
X Position (steps)

*125 Instrumented pixels
(3 disconnected)
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Hexcavity Efficiency w.r.t. Cosmic Muons
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“High-Res” Fab Capability

Fabricated Structure: 0.27 mm Hexagon Pixels, 73% Fill-Factor
14,400 pixel structure (120 x 120 matrix)
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(Left) — Photo of small segment of high-resolution fabricated ceramic SPACER plate with 0.05 mm_width-wall
structure between adjacent hexagon HOLES. Hexagon hole pitch of 0.32mm (i.e. 120-row x 120-column matrix,
with 14,400 pixels). Note the excellent hole & wall uniformity with “zero” defects for 14,400 holes!

(Right) — Photo of small segment of high-resolution fabricated ceramic HEXCAVITY plate with same 0.05mm
width-wall structure and same cavity pitch of 0.32mm (i.e. 120-row x 120-column matrix). Note off-angle lighting
shows reflection of cavity hexagon walls on cavity bottom.

28



Grid-Support UltraThin-PPS

(Hybrid of “open” & “closed” cell structures)



Electrodes on UltraThin Mica & Glass

Substrate Size: 3.00” x 3.15” WM“\\\\
Areal Density/Mass Thickness = 2.2 mg/cm? (Mica) vs. 6.6 mg/cm? (Glass)

(substrate “curling” shown in top right photo has been fixed
as seen in bottom right photo)
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Left: 8 um thick Mica substrate with electrode pitch of 1.00 mm. Right: 27 um thick Glass substrate with electrode pitch in
active area (center) of 0.35 mm. Narrow electrode width & spacing on the very slightly bowed Glass created the Lissajou
type interference pattern, which is an optical artifact of image magnification and viewing angle. The actual electrode pattern is
very uniform as seen at top & bottom. Metallization systems (20) evaluated include: Al, Au, Cu, Cr, Mo, Pt, Ru, Ta, Ti, W, Zr.
The chosen system is compatible with both soldering and wire-bonding (pull strength >11 grams) for pad connections.
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Beam Energy Loss* in UltraThin Glass vs. Mica

Energy Loss in 25 um thick Glass cover PPS for selected lon Beams
(gasis 1.0 mm of Ar at 100 Torr; no nuclei get through the glass at 1 MeV/A)

Energy Ion Energy Energy loss in Glass Energy loss in Gas
(MeV)/A (MeV) (MeV) MeV (# ion pairs)
3.0 (Ni-64) 192 190 0.13 (4,700)
3.0 (Sn-124) 372 348 0.57 (21,000)
3.0 (U-238) 714 570 1.52 (58,000)

Energy Loss in 8 um thick Mica cover PPS for selected Ion Beams
(gas is 1.0 mm of Ar at 100 Torr ; all nuclei get through 2 panels at 12 MeV/A)

Energy Ion Energy Energy loss in Mica Energy loss in Gas
(MeV)/A (MeV) (MeV) MeV (# ion pairs)
1.0 (H-1) 1 0.5 0.006 (210)
1.0 (He-4) 4 2 0.02 (810)
1.0 (C-12) 12 12 0.04 (1,400)
1.0 (Ni-64) 64 62 0.14 (5,400)
1.0 (Sn-124) 124 107 0.53 (20,000)
1.0 (U-238) 238 143 1.20 (47,000)

*Energy Loss calculated using Geant4. A value of 26 eV was used for the effective Ar ionization energy
and came from the tabulation in “Average Energy Required to Produce an lon Pair”, ICRU Report #31.

31



e
’

~

Assembled
Front plate
(glass seal)

27 um Glass
substrate, 1.00 mm
electrode pitch

UltraThin-PPS Assembled Panel (64% Fill-Factor)

View from panel BACK side

View from panel FRONT side

32



Summary

PPS detectors have demonstrated: submillimeter position-resolution, good pixel-to-pixel
uniformity, pixel response isolation, time resolutions of ~ 2 ns at 740 Torr internal gas
pressure, excellent S/N, high gain, and relative efficiencies of essentially unity (i.e., ~ 100%)
over a 60-100 volt range for beta and cosmic muon sources. We expect < 0.5 ns timing at

< 100 Torr pressure. Similar efficiencies have been demonstrated for protons & neutrons.

Each pixel responds as an individual detector. Spatial fill-factors have increased from 18%
to 70%, with future designs expected to achieve fill-factors > 90%. PPS devices have
demonstrated successful operation over a wide voltage range (~ 100 volts) to beta-sources
at internal gas pressures of 30 Torr, which is much better than expected and bodes well for
ultrathin panels that must operate in a vacuum environment.

The proposed “ultrathin” grid-support PPS design is a “hybrid” structure between “open”
and “closed” cell PPS structures.

Two ultrathin PPS device substrates are under development: 27 um thick Glass and 8 um
thick Mica. We have demonstrated both substrates capable of holding a vacuum, but the
much thicker Glass substrates seem to be more fragile than the Mica. Avoiding substrate
breakage during final panel assembly has been a challenge (now on 3™ Gen. fixtures).

Problems associated with electrode patterning on ultrathin Glass & Mica have been solved,
including: high-resolution electrode patterning, substrate breakage during electrode
deposition, elimination of substrate flexing/curling, poor electrode adhesion to substrate,
and electrode degradation upon exposure to high intensity plasma discharges/streamers.
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Question for NP Community

We are interesting in other applications
that could benefit by being able to fabricate
devices with electrode circuitry on 8-27 um

ultrathin inorganic substrates.
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