
Reservoir Labs 8.10.16

Department of Energy Office of Science, Office of Nuclear Physics,
SBIR/STTR Exchange Meeting, August 9-10 2016

Polyhedral Mapping Assistant and Visualizer
(PUMA-V)

Reservoir Labs 8.10.16

• Project and Motivation
• US Department of Energy contract number DE-SC0009678:

– Phase II STTR, 2014 Award Year.
– April 15, 2014 – April 15, 2016 term
– Solic. Number DE-FOA-0001019, Topic Code 39e
– Reservoir Labs, SUNY StonyBrook, Brookhaven National Lab

• Motivation:
– Lattice QCD community has traditionally produced very efficient home-grown

software and is continuing to do so.
– However, with the arrival of new hardware architectures, significant efforts

are required to optimize the software for the target new architecture.
• One way to deal with this is to rewrite the software to be “future-proof”.
• Another way is to see if there are any automation tools that are capable of producing

efficient code for a target architecture from generic, high-level, user codes.

– As a Phase II US DOE SBIR/STTR funded program, PUMA-V explores the second
approach, seeking to use the R-Stream source-to-source compiler to optimize
the Domain Wall Dirac operator implementation as well as develop
accelerated solvers and state-of-the-art visualization methods

– Columbia Physics System (CPS) as initial target.

2

Polyhedral Mapping Assistant and Visualizer
(PUMA-V)

Reservoir Labs 8.10.16

• Goals for Accelerating Code Production for Nuclear Physics
• Algorithms for automatic generation of highly optimized

heterogeneous code based on inherent properties of Lattice QCD
problem, providing opportunities for substantial speed-ups in
computation.
– Compiler technology (R-Stream) to help with specific computations,

especially those related to the proton size puzzle and muon magnetic
moment, of particular interest to our domain expert partners (BNL).

• An automated visualization tool-chain to assist with software
optimizations and mappings in high dimensional spaces, of great
utility not only to the physics community but to the larger scientic
computation enterprise.
– Performance visualizer and IDE plugin development for intuitive code

generation (Stonybrook)

• New opportunities to lower cost and power requirements for large
computations needed in fundamental physics, fluid dynamics,
computational biology and other scientific disciplines.
– Faster preconditioners and solvers (CMG, Peng-Spielman, etc.)

3

Polyhedral Mapping Assistant and Visualizer
(PUMA-V)

Reservoir Labs 8.10.16

• PUMA-V Personnel
• Reservoir Labs, Compiler Technology and Solvers:

– M. Harper Langston, PhD – PI of PUMA-V project
– Richard Lethin, PhD - President of Reservoir Labs
– Benoit Meister, PhD – Managing Engineer
– Athanasios Konstantinidis, PhD – Senior Engineer

• Brookhaven National Lab, Domain Experts:
– Taku Izubuchi, PhD
– Meifeng Lin, PhD
– Chulwoo Jung, PhD

• StonyBrook University, Visualization and Compiler Technology:
– Klaus Mueller, PhD
– Eric Papenhausen
– Bing Wang

4

PUMA-V Teams

Reservoir Labs 8.10.16

• Founded 1990 – Offices in New York City and Portland, OR
• Involved in a variety of research projects to explore ways to solve dynamic systems

and effectively compile real-world algorithms. Work for and with numerous
government institutions, and collaborate closely with other leading researchers and
academics around the world. Sample projects:
– R-Stream® — advanced compiler technology enables developers to create program logic once

and produce optimized code for multiple parallel computing architectures.
– R-Solve® – An automated reasoning technology that addresses dynamic problems in advanced

planning and decision analysis, modeling and simulation.
– ENSIGN – Cutting-edge hypergraph analysis technology for Big Data applications spanning

security, finance and biology.

• Provide services and products to commercial clients through research technologies for
organizations working on novel high-performance systems; package those
technologies in turnkey commercial and government solutions that address important
science and security issues. Sample products:
– R-Scope Network Security Monitoring — Puts networks under a microscope so customers can

respond to both known and zero-day attacks before becoming crises.
– R-Check® SCA — Simplifies and accelerates SCA-compliance testing for defense communication

systems worldwide, shortening the timeframe for checking from weeks and months to hours.

• More than 30 full-time researchers and engineers (half with PhDs) and a mature business
development department

5

Reservoir Labs, Inc.

https://www.reservoir.com/product/r-stream/
https://www.reservoir.com/research/tech/ar-solve/
https://www.reservoir.com/research/tech/hypergraphtensor-analysis/
https://www.reservoir.com/product/r-scope/
https://www.reservoir.com/product/r-check-sca/

Reservoir Labs 8.10.16

• CPS Code Modifications
• Visualizer Tool
• Extending R-Stream with an LLVM front-end for Templated C++
• Fast Linear Solvers

6

Polyhedral Mapping Assistant and Visualizer
(PUMA-V) Major Efforts

Reservoir Labs 8.10.16

• Developed by Reservoir Labs Inc.
• A high-level source-to-source

compiler based on the
polyhedral model, a
mathematical abstraction
for analysis and transformation
of computer programs:
– Darte, Schreiber & Villard, 1985
– Feautrier 1992

• Performs optimizations in terms
of parallelization, memory manage-
ment, locality etc. and can target
a range of hardware architectures.

• Accepts a sequential C program as input and produces code in a variety of
formats, including C + OpenMP and CUDA.
– Meister et. al, 2011
– Vasilache et. Al, 2013

• Used for PUMA-V in targeting key code kernels in the LQCD formulations

7

R-Stream Polyhedral Model Compiler

Reservoir Labs 8.10.16 8

• In Lattice QCD (LQCD) simulations, the most computation intensive part is the
inversion of the fermion Dirac matrix, M .

• In quark propagator calculation, need to solve M φ = b.
• In gauge ensemble generation, need to solve M † M χ = η.

• The recurring component of the matrix inversions is the application of the
Dirac matrix on a fermion vector.

• For Wilson fermions, the Dirac matrix can be written as

(1)M = 1 − κD,

up to a normalization factor, where κ is the hopping parameter, and D is the
derivative part of the fermion matrix, the Dslash operator.

• The matrix-vector multiplication in LQCD essentially reduces to the application of
the Dslash operator on a fermion vector.

• The motivations for this work are
• to see if source-to-source code generators can produce reasonably performant code if

only given a naive implementation of the Dslash operator as an input;
• to investigate optimization strategies in terms of SIMD vectorization, OpenMP

multithreading and multinode scaling with MPI.

CPS Code Modification Motivation

Reservoir Labs 8.10.16

• The Domain Wall (DW) fermion matrix can be written as

M D W
x,s;xl,sl 5 x,xl s,sl

1
2

= (4 − m)δ δ − D W 5
x,xl s,sl s,sl x,xlδ + D δ , (2)

where m5 is the domain wall height, D W is the Wilson Dslash operator, and D5
x,x l ssl

is the fermion mass term that couples the two boundaries in the 5th dimension,

D5
ssl

1
= − 2

1(1 − γ5)δs+1,sl + (1 + γ5)δs−1,sl − 2δs,sl
l

2

9

mf 1
+ (1 − γ)δ5 s,L 0,sl 5 s,0δ + (1 + γ)δ δ ss − 1 L −1,s l

l
. (3)

• Most FLOPs are in the 4D derivative term (DWF 4D Dslash) in Eq.(2): 1320 flops per
site.

• <→ focus of our optimizations.

Domain Wall Dslash Operator

Reservoir Labs 8.10.16 1
0

• The input code we used is the unoptimized noarch implementation of
the Dslash in CPS.

• Most straightforward implementation, direct transcription of the Dslash
definition.

• Some manual code transformation was needed to get R-Stream to parse the
code:

• Delinearized array access: 1D array → multidimensional array

• Removal of the modulo statements: introduced boundary padding.

• With these changes, R-Stream was able to produce generated code. However, the
resulting code did not give very good performance. Some hand tuning was
required.

• Remainder involved hand-tuning efforts.

R-StreamTransformation of the DW 4D Dslash

Reservoir Labs 8.10.16 1
1

• Within the node, we use OpenMP for multithreading.
• Three strategies have been explored:

• Simple Pragma: Thread the outer loop, usually the t loop.
c→ Parallelism is limited by the t dimension size, won’t scale well in many-core systems.

• Compressed Loop: Compress the nested loops into one single loop.
• Explicit Work Distribution: Similar to Compressed Loop, but explicitly assign work to

each thread.

#pragma omp parallel
{
int nthreads = omp_get_num_threads();
int tid = omp_get_thread_num();
int work = NT*NZ*NY*(NX/2)/nthreads;
int start = tid * work;

int end = (tid+1) * work;
for(lat_idx = start; lat_idx < end; lat_idx++)
......
}

OpenMP Optimization:
Multithreading with OpenMP

Reservoir Labs 8.10.16

1

Performance was measured on LIRED, with dual-socket Haswell per node @ 2.6 GHz
(24 cores).

• 84 × 8
Num. Threads Simple Pragma Compressed Loop Explicit Dist.

1 28.4 GF/s 28.0 GF/s 28.0 GF/s
2 51.5 GF/s 54.1 GF/s 54.1 GF/s
4 90.1 GF/s 90.1 GF/s 90.1 GF/s
8 135.2 GF/s 135.2 GF/s 144.2 GF/s
16 127.2 GF/s 180.2 GF/s 154.4 GF/s

• 163 × 32 × 8:

Num. Threads Simple Pragma Compressed Loop Explicit Dist.
1 26.9 GF/s 26.5 GF/s 26.8 GF/s
2 54.5 GF/s 52.0 GF/s 52.8 GF/s
4 100.3 GF/s 96.1 GF/s 100.3 GF/s
8 168.8 GF/s 160.9 GF/s 168.8 GF/s
16 197.7 GF/s 182.1 GF/s 192.2 GF/s

OpenMP Optimization:
OpenMP Performance

Reservoir Labs 8.10.16

• Three threading approaches result in similar performances, except when the
problem size is small, Simple Pragma doesn’t scale as well.

• Surprisingly, the performance does not deteriorate with a much larger lattice size
<→ possible indication of poor cache reuse.

• Volume comparison:
Left - Compressed Loop. Right - Explicit Work Distribution.

200

180

160

140

120

100

80

60

40

20
0 20

G
Fl

op
s

5 10 15
Num. of OpenMP Threads

83x8x8
83x16x8
83x32x8

82x16x32x8
8x162x32x8316 x32x8

200

180

160

140

120

100

80

60

40

20
0 20

G
Fl

op
s

5 10 15
Num. of OpenMP Threads

83x8x8
83x16x8
83x32x8

82x16x32x8
8x162x32x8316 x32x8

We also found that that binding OpenMP threads to the processors can improve the
OpenMP performance a lot. With gcc, this is done through
export OMP_PROC_BIND=true

16

OpenMP Optimization:
OpenMP Summary

Reservoir Labs 8.10.16

• We use QMP for communications between nodes.
• The communication pattern is illustrated in the following. There is blocking for

each transfer sequence.

1

2

34

2

1

4 3

1
4

• The best performance is obtained with 2 MPI processes per node (1 MPI process
per socket, improved data locality).

• With each MPI process, a number of threads equal to the number of compute
cores are used.

• We dedicate one thread (the master thread) to do the communications, and the
rest of the threads for computation.

• Do bulk computation first while waiting for the communication to complete, then
do the boundary computation.

Multinode/MPI Optimization:
Internode Communication

Reservoir Labs 8.10.16

• Strong scaling study of a
323 × 64 × 8 calculation was
performed on LIRED, with
dual-socket Intel Haswell CPUs and
Mellanox 56 Gigabit FDR
interconnect.

• The performance scales well up to 4
nodes, and scales sublinearly from 8
to 16 nodes.

• After 4 nodes, the total time is
dominated by the communication
time.

• Bulk computation itself scales well
with the number of nodes.

• Rediscovered the old truth:
Communication is the bottleneck for
strong scaling!

0

500

1000

1500

2000

2500

3000

3500

0 2 4 12 14 16

To
ta

l G
Fl

op
s

6 8 10
Num. ofNodes

Strong Scaling, 323x64x8
PerfectScaling

45

40

35

30

25

20

15

10

5

0
0 2 4

Ti
m

e
[m

s]

6 8 10 12 14 16
Num. ofNodes

BulkTime
Boundary Time

Comm.Time

Multinode/MPI Optimization:
Multinode Performance

Reservoir Labs 8.10.16 21

• To produce efficient Dslash code, optimizations in terms of data layout, SIMD,
OpenMP scaling and internode communications have been studied.

• By vectorizing and changing the memory access pattern, we obtained 34% peak
single-core performance in single precision.
<→May still have poor cache reuse.

• On single node, OpenMP scaling deteriorates after 16 threads.
<→ Further improvements possible.

• Multinode strong scaling is limited by the communication cost.
<→ Better (higher-bandwidth) interconnects are critical.

• Results in this presentation were obtained using the high-performance Handy and
LIRED computing systems at the Institute for Advanced Computational Science at Stony
Brook University and the hpc1 computing cluster at the Brookhaven National Laboratory.

CPS Code Modification Conclusions

Reservoir Labs 8.10.16

• CPS Code Modifications
• Visualizer Tool
• Extending R-Stream with an LLVM front-end for Templated C++
• Fast Linear Solvers

17

Polyhedral Mapping Assistant and Visualizer
(PUMA-V) Major Efforts

Reservoir Labs 8.10.16

• Visualizer Eclipse Plugin with Performance Tuning (Stonybrook Focus)
• Automated toolchain to

allow user-in-the-loop
to make more intuitive
decisions for parallel-
ization and R-Stream
compiler optimizations.
(Video)

• Performance Profiling

18

PUMA-V Visualizer: Previous Version

• Tool and results published
Proceedings of
IEEE VISSOFT 2015

Reservoir Labs 8.10.16 19

PUMA-V Visualizer Current Version and Updates

• Visualizer Browser Plugin with Performance Tuning
• New implementation using the d3js javascript visualization library.
• New list of tactics view is now a subway visualization.
• Beta tree nodes are colored to show the level of parallelism.
• Strongly Connected Components graph includes more visualizations, giving

more insight into locality.
• New code view has text highlighting to show the differences between

different transformations.
• New version augments the beta tree view to visualize run time performance

data.
• User now allowed to manually permute loops by dragging and dropping nodes

in the beta tree.
• New star plot view allows the user to have more control over the alpha

component of the schedule matrix.
• Currently optimized and tested with Google Chrome.
• Being spearheaded by Eric Papenhausen and Klaus Mueller at Stonybrook

Reservoir Labs 8.10.16 20

PUMA-V Visualizer Matrix Mult. Example

Reservoir Labs 8.10.16 21

PUMA-V Visualizer Matrix Multiplication Example

List of R-Stream
tactics applied.

Yellow indicates views
showing results after
this tactic.

Reservoir Labs 8.10.16 22

PUMA-V Visualizer Matrix Multiplication Example

Nodes correspond to statements and edges indicate dependence between two statements.
- Length of edge corresponds to dependence distance.
- Width of edge corresponds to volume of data in dependence.
- Nodes colored based on level of locality with respect to inner most loop of the statement:

- Green indicates good locality and red indicates bad locality.;
- Size of the nodes is determined by the dependence distance of any self dependences

SCC Graph
constructed from
Data Dependence
Graph.

Reservoir Labs 8.10.16 23

PUMA-V Visualizer Matrix Multiplication Example

Center view shows
a pseudocode
output of the
code after
applying the
current R-Stream
tactic.

Reservoir Labs 8.10.16 24

PUMA-V Visualizer Matrix Multiplication Example

Inner nodes correspond to loops and the leaf nodes correspond to statements.
- Nodes are colored based on the level of parallelism available for the corresponding loop.

- Nodes are either colored red, yellow, or green to indicate a sequential, reduction, or doall loop.
- Nodes corresponding to statements are colored in blue.

- Width of edges show distribution of time spent in each branch of beta tree based on empirical
performance and are colored based on the L2 cache miss rate

- Green for low cache miss rate and red for high cache miss rate).

Beta Tree View shows
lexicographic ordering of
loops and statements in
the transformed code.

Reservoir Labs 8.10.16 25

PUMA-V Visualizer Matrix Multiplication Example

Runtime Eval
Button

When clicked, runtime evaluation will compile and execute the current
transformed code, evaluate performance and update the beta tree edges with
performance metrics from HPCtoolkit.

Reservoir Labs 8.10.16 26

PUMA-V Visualizer Matrix Multiplication Example

Each start plot represents each loop level or loop in a nest
- Can perform transformations that have more control over the execution order such as loop interchange or

skewing by dragging points on the relevant axis' in a star plot.
- Axes colored based on the parallelism of the transformation when points dragged to that axis.

- Green indicates doall parallelism, yellow indicates a reduction and red indicates a sequential loop.
- Black indicate that this transformation will be illegal.

Star plots sequence
represents alpha
component of
schedule matrix.

Reservoir Labs 8.10.16 27

PUMA-V Visualizer Trisolv Optimization Example

In this example, each branch corresponds to a different scheduling algorithm.
- Parts of the code view are also highlighted in green, showing the parts of

the code that have changed since the previous tactic.

Multiple different
branches
in the R-Stream
Tactics.
Each branch is a
different set
of optimizations
that are applied

Reservoir Labs 8.10.16

Published at Sixth International Workshop on Parallel Software Tools
and Tool Infrastructures (PSTI 2016) and 2016 New York Scientific Data
Summit (NYSDS 2016)
• Link for Sample Video:

– https://drive.google.com/open?id=0B1lSipOr3uq8XzFDTjR1NnhsYUk

28

Polyhedral Mapping Assistant and Visualizer
(PUMA-V) Tool Video

Reservoir Labs 8.10.16

• CPS Code Modifications
• Visualizer Tool
• Extending R-Stream with an LLVM front-end for Templated C++
• Fast Linear Solvers

29

Polyhedral Mapping Assistant and Visualizer
(PUMA-V) Major Efforts

Reservoir Labs 8.10.16

Goal: extending the R-Stream compiler to apply the polyhedral analysis and
optimization capabilities described on templated C++ codes like qdp++, among
other languages.
• Implemented converter from LLVM compiler Internal Representation (IR) to R-Stream’s IR
• Expected result is for R-Stream to benefit from all the front-ends associated with LLVM,

and in particular its Clang state-of-the-art C++ front-end
• Current R-Stream Compilation Flow

• LLVM IR and SPRIG have a lot of commonalities. We determined that an LLVM IR to SPRIG
IR translation would be the most simple and beneficial implementation path.
– Starting from LLVM ensures support for any language accepted by an LLVM front-end.
– Supported languages include C, C++, and Julia, and we expect that FORTRAN will also be

supported within the next few years.
– This will enable us to incorporate both LLVM and SPRIG optimizations in the compilation

process. Besides, we find development within SPRIG easier than in LLVM, perhaps because its
architecture is geared towards clarity rather than last-drop optimal compilation time.

30

Extending R-Stream with an LLVM Front-End for
Templated C++

Reservoir Labs 8.10.16

New R-Stream flow includes an LLVM IR to SPRIG conversion step.

• The detail of this step is represented at the bottom of the figure.
• Basically serialize LLVM IR objects using the JSON textual object representation, and re-

serialize them as Java objects within R-Stream.
• JSON is a language-independent human-readable open-standard data format

– Attractive for achieving our goal because it is lightweight, language-independent and numerous
tools to parse, analyze and generate JSON are available in a plethora of programming languages.

31

Extending R-Stream with an LLVM Front-End for
Templated C++

Reservoir Labs 8.10.16

Working towards extending the R-Stream compiler such that it will be able to apply
the polyhedral analysis and optimization capabilities templated C++ codes such as
QDP++.
• We have been able to successfully generate and validate JSON output from Clang for the

QDP++ Dslash test function, which while quite small, embeds a complex and deep
template structure. Basically serialize LLVM IR objects using the JSON textual object
representation, and re-serialize them as Java objects within R-Stream.

• We continue to work to developing the full pipeline for source-to-source compilation of
these complex codes through R-Stream .

• We will soon be able to translate enough LLVM IR to fully support C99. A small set of
features is missing to fully support C++
– Because R-Stream is a source-to-source compiler, supporting a new feature means

extending the internal representation and implementing pretty-printing (writing back C
or C++ from SPRIG) for it.

32

Extending R-Stream with an LLVM Front-End for
Templated C++

Reservoir Labs 8.10.16

• CPS Code Modifications
• Visualizer Tool
• Extending R-Stream with an LLVM front-end for Templated C++
• Fast Linear Solvers

33

Polyhedral Mapping Assistant and Visualizer
(PUMA-V) Major Efforts

Reservoir Labs 8.10.16

• Solving the linear system Ax = b with actual solution x := A-1 b.
• Find B that approximates A in a spectral sense, so solving By = c is easier
• Based on Spielman and Teng (2003-current), solve a system of linear equations

with a symmetric diagonally dominant (SDD) discrete operator:

– SDD systems have clear
connection with graphs
and Laplacians:

– Low-stretch trees approximate
most distances to within O(log m)
using only m-1 edges:

– Approaches incorporate elements of direct and iterative solvers for class of problems with
graph clustering, spectral sparsification, partial factorizations, minimal trees for state of
the art towards O(mlogcn) solver for m edges and n vertices (Koutis et. al 2009: CMG,
Kelner et. al 2013, Peng-Spielman 2014)

34

Spectral Support Preconditioning and Nearly-
Linear Time Solvers, Combinatorial Multigrid

Reservoir Labs 8.10.16

• Sparsifiers generate a “smaller” matrix or analogous graph structure, which
preserves many graph parameters.

• Computationally very expensive and only seemingly practical in the theoretical
realm! Further, computing on the fly tricky. The idea is to maintain “cliques” and
“cycles”.
– Can be satisfied if the general structure remains in a simpler fashion using simpler

strategies.

• Complex-valued data for NP problems
• NP problems not diagonally-dominant, though CMG can still handle this

35

Combinatorial Multigrid Issues

Reservoir Labs 8.10.16

• Small non-LQCD SDD system for testing
MATLAB CMG:
– Significantly-reduced iteration counts

as condition numbers grow

• Incomplete Cholesky-based
preconditioners on small
LQCD system:

– IC-based preconditioners show great promise, but LQCD matrices are computed at
run-time, so computing incomplete factorization may require too much memory in
practice

36

Preconditioner Sample Results

Reservoir Labs 8.10.16

• Unstructured FEM Problem with Sparsity:

• Results:

37

Preconditioner Sample Results

Reservoir Labs 8.10.16

• Summary and Ongoing Goals
• CPS Code Enhancements: The speedup in the DWF Dslash that has been obtained as a result

of this project will enable the BNL LQCD scientists to make more efficient use of the PC clusters
installed at Fermilab and elsewhere for LQCD computations as well as increase the precision of their
calculations, make better predictions using the QCD theory to confront experiment and potentially
discover new physics in a shorter time. We are currently in the process of submitting publications
based on our work and findings. We continue to work on porting our modifications and
advancements to other architectures, such as Intel Xeon Phi (Knights Landing or later). At least two
US supercomputers coming later this year will have KNL (Cori at NERSC and Theta at Argonne
National Lab). ANL will have AURORA in 2-3 years which will have the next-generation Intel Xeon
Phi architecture, so targeting these architectures will be important.

• PUMA-V Visualizer Tool: The two PUMA-V tools, developed for the Eclipse IDE and web-based
d3js, combine fully automatic and manual techniques for optimizing source code. The techniques,
scenarios, and user studies presented suggest that combining automatic methods with user intuition
can lead to significantly better performance compared to automatic methods alone. Using effective
visualizations through multiple views helps users seize optimization opportunities missed by the
auto-parallelizing compiler. Embedding heuristics and runtime performance into the visualization
assists users in identifying bottlenecks. The educational opportunities and ability to bring the
polyhedral model and R-Stream to a wider audience cannot be overstated. This new tool has shown
through user studies to provide better intuition to expert users and an easier entry point for novice
users to the world of source-to-source optimizers and compilers.

38

PUMA-V Conclusions Part I

Reservoir Labs 8.10.16

• Summary and Ongoing Goals
• Extending R-Stream with LLVM for Mapping C++ and QDP++ Codes: Have worked

towards extending the R-Stream compiler such that it will be able to apply the polyhedral analysis
and optimization capabilities. In order to achieve this, we implemented a converter from the LLVM
compiler Internal Representation (IR) to R-Stream’s IR. The expected result is for R-Stream to benefit
from all the front-ends associated with LLVM, and in particular its Clang state-of-the-art C++ front-
end. We have been able to successfully generate and validate JSON output from Clang for the QDP++
Dslash test function, which while quite small, embeds a complex and deep template structure. We
continue to work to developing the full pipeline for source-to-source compilation of these complex
codes through R-Stream . We will soon be be able to translate enough LLVM IR to fully support C99. A
small set of features is missing to fully support C++. Because R-Stream is a source-to-source
compiler, supporting a new feature means extending the internal representation and implementing
pretty-printing (writing back C or C++ from SPRIG) for it.

• Fast Linear Solvers and Combinatorial Multigrid: Compared multiple preconditioners
such as the Incomplete Cholesky variants against the common even-odd preconditioning method for
solving large LQCD systems with Conjugate Gradient. It was clear that there are strong advantages to
developing new and more robust preconditioners. By reducing the iteration count and in-iteration
complexities, solving the inherently large and poorly-conditioned systems with DWF could results in
significant time savings. One difficulty in our research, however, was that many of these systems are
too large to fully compute and store, so algebraic solutions such as ICC are often difficult. We looked
at possibilities in the realm of support graph theory. In particular, we have successfully developed a
faster version of the Combinatorial Multigrid algorithm, embedding it in Petsc and test it with great
success on real-world linear systems from FEM research.

39

PUMA-V Conclusions Part II

Reservoir Labs 8.10.16 40

Thank You!
Questions/Comments

	Polyhedral Mapping Assistant and Visualizer (PUMA-V)
	Polyhedral Mapping Assistant and Visualizer (PUMA-V)
	Polyhedral Mapping Assistant and Visualizer (PUMA-V)
	PUMA-V Teams
	Reservoir Labs, Inc.
	Polyhedral Mapping Assistant and Visualizer (PUMA-V) Major Efforts
	R-Stream Polyhedral Model Compiler
	CPS Code Modification Motivation
	Domain Wall Dslash Operator
	R-Stream Transformation of the DW 4D Dslash
	OpenMP Optimization:�Multithreading with OpenMP
	OpenMP Optimization:�OpenMP Performance
	OpenMP Optimization:�OpenMP Summary
	Multinode/MPI Optimization:�Internode Communication
	Multinode/MPI Optimization:�Multinode Performance
	CPS Code Modification Conclusions
	Polyhedral Mapping Assistant and Visualizer (PUMA-V) Major Efforts
	PUMA-V Visualizer: Previous Version	
	PUMA-V Visualizer Current Version and Updates
	PUMA-V Visualizer Matrix Mult. Example	
	PUMA-V Visualizer Matrix Multiplication Example	
	PUMA-V Visualizer Matrix Multiplication Example	
	PUMA-V Visualizer Matrix Multiplication Example	
	PUMA-V Visualizer Matrix Multiplication Example	
	PUMA-V Visualizer Matrix Multiplication Example	
	PUMA-V Visualizer Matrix Multiplication Example	
	PUMA-V Visualizer Trisolv Optimization Example	
	Polyhedral Mapping Assistant and Visualizer (PUMA-V) Tool Video
	Polyhedral Mapping Assistant and Visualizer (PUMA-V) Major Efforts
	Extending R-Stream with an LLVM Front-End for Templated C++
	Extending R-Stream with an LLVM Front-End for Templated C++
	Extending R-Stream with an LLVM Front-End for Templated C++
	Polyhedral Mapping Assistant and Visualizer (PUMA-V) Major Efforts
	Spectral Support Preconditioning and Nearly-Linear Time Solvers, Combinatorial Multigrid
	Combinatorial Multigrid Issues
	Preconditioner Sample Results
	Preconditioner Sample Results
	PUMA-V Conclusions Part I	
	PUMA-V Conclusions Part II 	
	Thank You!�Questions/Comments

