

FERROELECTRIC BASED HIGH POWER COMPONENTS FOR L-BAND ACCELERATOR APPLICATIONS

Supported by the DOE SIR DE-SC0007630, Phase II

Alexei Kanareykin,

Euclid Techlabs LLC On behalf of Euclid Techlabs/BNL/FNAL collaboration

Department of Energy SBIR/STTR Exchange Meeting August 9-10 2016

Euclid Techlabs LLC

Euclid TechLabs LLC, founded in 1999 is a company specializing in the development of advanced materials and new designs for beam physics and high power/high frequency applications. Additional areas of expertise include dielectric structure based accelerators and "smart" materials technology and applications.

- 20 people, 17 research staff including 14 PhDs.
- 2 offices: Bolingbrook, IL (lab) and Gaithersburg MD (administrative).
- Tight collaborations with National Labs: Argonne, Fermi, BNL, LBNL, LANL.
- Actively participate in Accelerator Stewardship DOE Program
- Joined Fermi/IARC lately

NEW LAB FACILITY IN BOLINGBROOK IL

- Compact electron accelerator test facility (bunker)
- Time resolved TEM beamline
- Clean room/magnetron sputtering (TiN, copper, dielectrics)
- Field Emission cathode DC test stand
- Femtosec laser
- RF lab
- ...other beam physics related equipment <u>www.beamphysics.com</u>

8000 sq. ft. - total 1000 sq.ft. – office 7000 sq.ft. - lab

ANL/AWA accelerator, ANL/CNM - FE UNCD, ANL/APS- diamond based X-ray optics Fermi: SRF tests

Products and Projects

L-band high peak current LINAC

UHV L-band RF window

Linear and non-linear ceramics low loss; various form factors

UNCD diamond cathode

Compact dielectric accelerator

3 Cell Traveling Wave SRF cavity (joint project with FNAL)

Photoinjectors:

- L-band high peak current
- S-band (high brightness)
- S-band (high rep rate)

Research on Dielectric Wake Field Accelerating (DWFA) structures

Experiments with DWFA were done by Euclid Techlabs at Argonne,

 Externally powered dielectric structure: Naval Research Lab

- designs: 7-26 GHz
- scalable to THz Brookhaven, SLAC

History: Tunable Dielectric-Based Accelerator

PRL 106, 164802 (2011)

Experimental Demonstration of Wakefield Acceleration in a Tunable Dielectric Loaded Accelerating Structure C. Jing,^{1,2} A. Kanareykin,¹ J. G. Power,² M. Conde,² W. Liu,² S. Antipov,^{1,2} P. Schoessow,¹ and W. Gai² ¹Euclid Techlabs, LLC, 5900 Harper Road, Solon, Ohio 44139, USA ²High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 28 January 2011; published 21 April 2011) We report on a collinear wakefield experiment using the first tunable dielectric loaded accelerating structure. By introducing an extra layer of nonlinear ferroelectric, which has a dielectric constant sensitive to temperature and dc bias, the frequency of a dielectric loaded accelerating structure can be tuned. During

PHYSICAL REVIEW LETTERS

 $\epsilon(E)$ for ferroelectric dielectric composite

NONLINEAR CERAMIC

US patent 7,768,187 US patent 8,067,324

week ending

22 APRIL 2011

Copper

Air 📄

a = 3mm

b = 4.35mm

c = 4.75 mm

+V

Ferroelectric(E=500)

Dielectric(ε=6.8)

Ferroelectric Based Tuner (Ultrafast Phase Shifter) for SRF Accelerator Operation

Motivation

> A fast controllable phase shifter would allow microphonics compensation for CW SRF accelerators supporting ERLs and FEL.

> Nonlinear ferroelectric microwave components can control the tuning or the input power coupling for rf cavities. Applying a bias voltage across a nonlinear ferroelectric changes its permittivity. This effect can be used to cause a phase change of a propagating rf signal or change the resonant frequency of a cavity. The key is the development of a low loss highly tunable ferroelectric material.

Topic was suggested by BNL (I.Ben-Zvi) for eRHIC cavity tuning

Tuner Requirements

$$P_g = P_{loss} + \omega W / Q_0 \quad \Delta \omega = 2Q_0 / \omega. \quad P_{g,max} = W \delta \omega$$

$$= P_g / P_{g,\max} = \delta \omega / \Delta \omega \left(1 - 4tn \delta \frac{\eta(\varphi_0)\varepsilon}{\Delta \varepsilon} \right).$$

for BNL ERL and the tuner described in the Euclid Proposal ($\Delta \epsilon / \epsilon = 0.2$ and $\phi_0 = 135^\circ$)

For a typical ferrolectric tuner needed for ERL SC cavity excitation, on need ferroelectric material having the tunability of 0.06 and loss tangent of ~0.001.

Progress on BST Material Development

(Ba, Sr)TiO₄+Mg oxides

Ferroelectric ceramic properties

Parameters	Value
dielectric constant, ε	50-450
tunability, $\Delta \varepsilon$	>30@15kV·cm ⁻¹ of the bias field
response time	< 10 ns
loss tangent at 1.3 GHz, tan δ	~1×10 ⁻³
breakdown limit	200 kV/cm
thermal conductivity, K	7.02 W/m-K
specific heat, C	0.605 kJ/kg-K
density, ρ	4.86 g/cm ³
coefficient of thermal expansion	10.1×10 ⁻⁶ K ⁻¹
temperature tolerance, ∂ε⁄∂T	(1-3) K ⁻¹

Issues with the ferroelectric elements

- Dielectric constant has to be low (~ 100)
- > Loss factor has to be low \sim 1.0 \times 10⁻³ at 1 GHz
- Tuning range has to be high ~ 6-8% at 20kV/cm
- Residual effects have to be mitigated

Ferroelectric composite materials

Patent US 8,067,324 B2, Nov. 29, 2011

Ceramics

Powders

SEM-image of the initial powders of barium titanate (a) and strontium titanate

(b)

Spectrum 5

38.09

24.64

22.82

23.84

23.16 100.00

100.00

100.00

Sr

1.39

0.26

16.33

27.91

SEM images and EDS data of the sample on the basis of BST ferroelectric with linear Mg - containing additive (T = 1420 ° C) (a, b) and (T = 1400 $^{\circ}$ C) (c).

0.25

23.36

Static and dynamic tunability as a function of the permittivity

SEM image of the boundary interface region in between the grains of the BST-MgO-Mg₂TiO₄ composite material.

Frequency dependence of ϵ and tan δ for the ferroelectrics with low permittivity

Ferroelectric Characterization

Material Characterization Results

Tube	ID(mm)	OD(mm)	L(mm)	T(°C)	f _{TE01} (MHz)	Eps	Eps (22.1C)
0	16.42-16.64	37.6-38.3	45.82	22.1	767.475	149.2	149.2
1	15.9-16.46	36.7-37.85	46	23.5	743.88	159.1	160.6
2	16.02-16.44	37-37.87	45.82	24.3	744.94	158.5	160.7
3	16-16.4	36.83-37.79	46.16	24	744.76	158.6	160.6
4	16.02-16.47	36.91-37.8	45.81	24.4	746.3825	158.2	160.6
5	15.93-16.4	36.81-37.65	45.95	25.3	750.3575	156.5	159.9
6	15.93-16.35	36.94-37.7	47.93	25.8	750.175	155.2	159.1

Ferroelectric #4: Eps(@39.6C)=138.1; Loss tan (@ 39.6C) ~ 8E-4

Euclid's Sputtering System, Bolingbrook IL

Fabrication of Ferroelectric Tuner

Machined to the dimensions

Metallization on ID and OD

Soldered Assembly

Inner and outer jacket for applying DC and cooling

Partial assembly

Ferroelectric Tuner full assembly

Tuning with temperature

Tuning with DC bias

Tuning with temperature and DC bias

Temperature: slow but wide tuning range

DC voltage: fast but narrow tuning range

Tuning with the fast <µs range DC pulser

Tuning with fast DC pulse

Tasks

- > Task 1: Design simulation studies for the ferroelectric phase shifter design.
- Task 2: Development of a ferroelectric material having a dielectric constant in the range 80-150, tunability 5-6% at 15-20 kV/cm and Q×f ~ 1500-1700.
- Task 3: Final design optimization of the tuning elements to further minimize losses and to improve efficiency. A HV connector design.
- > Task 4: Engineering design for the phase shifter.
- > Task 5. Phase shifter manufacturing and assembling.
- Task 6: Low power tests of the ferroelectric phase shifter under temperature and high dc bias control voltages. Fast < μs switching demonstration.</p>
- Task 7: High-power test.

Pass to the High Power Test

1. Using ANL/APS 100 kW 350 MHz Test Stand

100kW and 150kW Tests on the AFT 350MHz Fast Ferrite Cavity Tuner

<u>100kW CW cavity tuning test</u>

- -- maintain cavity resonance at 100kW
 - CW cavity input power
- -- demonstrate minimum cavity tuning
- range of 10kHz
- -- limited to 100kW CW due to limit of cavity coupler
- <u>150kW CW power handling</u> capability test
 - -- Qualify operation of the fast-ferrite tuner at it's specified maximum power input

Doug Horan Advanced Photon Source RF Group

2. Losses control, surface DC breakdown prevention

3. Resonance frequency, operating temperature, losses and DC tuning range optimization ⁵⁰⁰

Summary

The ultimate goal of the Phase II project is (1) design a ferroelectric element based on BST(M) material with the required parameters; (2) development of metallization technology with no residual effects; (3) the tuner engineering design; (4) the fast tuner fabrication; (5) fast < μ s switching time demonstration (6) high power testing

- Ferroelectric element has been designed and fabrication, ε ~ 100-150; loss factor ~ 1.0 ×10⁻³ at 700 MHz; tuning dielectric constant ~ 6% at 20kV/cm; residual effects can be mitigated with metallization technology
- the tuner assembled, bench tested, temperature (slow) tuning demonstrated with 360^o range,
- \blacktriangleright dc voltage (fast) tuning demonstrated at < 1 µs ~100⁰ range
- high power test to be carried out

Commercialization: high (10-100 kW) and mid (10-100 W) power fast switching RF components

