Development of a Multicell Superconducting Cavity with a Photonic-Bandgap Coupling Cell

Chase H. Boulware, Terry L. Grimm, Sergey Arsenyev* Niowave, Inc. Lansing MI

NP SBIR/STTR Exchange Meeting, Gaithersburg MD August 2016

*MIT graduate student in residence (now PhD)

NIOWAVE www.niowaveinc.com

Commercial Uses of Superconducting Electron Linacs

XX

High Power X-Ray Sources

NIOW

Radioisotope Production

High Flux Neutron Sources

Free Electron Lasers

Turnkey Linac Subsystems [1]

Superconducting cavities in specialized geometries

Cryomodules

Turnkey Linac Subsystems [2]

Industrial Accelerator Controls (Programmable Logic Controllers with PC interface) Solid-state and tetrode RF amplifiers (up to 60 kW) • Harmonic linearizing cavity for eRHIC

Project Overview

- benefits of long pulse operation
- need for high-current linearizing section
- Superconducting photonic-bandgap (PBG) cavity design
 - PBG cell design
 - multi-cell cavity
- Cavity prototype fabrication
 - niobium forming
 - RF measurements and tuning
- Cavity prototype testing
- Beam-capable cryomodule concept

Project Team

Chase Boulware, Terry Grimm, Eike Schnabel, other Design and Engineering Staff

Evgenya Simakov

Ilan Ben-Zvi, Sergey Belomestnykh* (consultation on eRHIC plans)

Sergey Arsenyev**

*now at Fermilab **now at CERN

accelerating cavities RF frequency	413 MHz		
5 th harmonic frequency	2064 MHz		
beam current	50 mA per pass		
bunch charge and repetition rate	5 nC @ 9.38 MHz		
electron beam energy (upgraded in stages)	5 GeV	20 GeV	30 GeV
bunch length (rms)	4 mm	2 mm	2 mm

- intense electron bunches lead to complex beam dynamics and drive unwanted higher-order modes
- longer bunches
 - reduced bunch intensity (good)
 - induced energy spread from main linac waveform depolarizes electron bunch (bad)

Harmonic SRF Linac

- combination of acceleration from main linac and properly phased harmonic cavity
- example: DESY (XFEL) pursued this approach at the 3rd harmonic
 - frequency of 3.9 GHz $(3 \times 1.3 \text{ GHz})$
 - SRF, but not operated CW

- geometric array of conductive rods has a bandgap
- removing a single rod creates a frequency specific resonator HOM

Single-cell PBGs

elliptical inner rods

NIOWAVI

- Niowave and LANL collaborated on several single-cell PBG cavities
- demonstrated up to 18 MV/m in cryotests at LANL.

all round rods

- Higher gradients in multi-cell cavities
- 5-cell design uses one PBG center cell
 - PBG for both accelerating power coupling and HOM damping
 - replaces end assemblies

- Design predates SBIR
- Implementation for Nb and RF measurements part of SBIR

Electric field magnitude along central axis

Magnetic field magnitude on niobium surfaces (peaks equal in each cell)

Cavity Mechanical Design

The SBIR kicked off with plans for manufacturing the 5-cell cavity design

- new forming steps for waveguide-cavity interface
- new rectangular vacuum seals designed based on aluminum diamond seals (TESLA design)

Cavity Fabrication [1]

Evgenya Simakov's Early Career project funded a copper prototype (project started a few months before Phase II SBIR). Many steps were prototyped. 15

Cavity Fabrication [2]

The SBIR project proceeded with niobium-specific issues

- electron-beam welding design and fixturing
- new rectangular vacuum seals and flanges designed based on aluminum diamond seals (TESLA design)

Cavity Fabrication [3]

Niobium cavity after electron-beam welding. Pre-tuning met goals for frequency and flatness.

Cavity Processing

Complete cavity underwent bulk etching and high-pressure rinse at Niowave.

Cryotest at LANL

Other passband mode showed high Q and surface fields up to 18 MV/m were generated.

Accelerating mode showed anomalous low-field Q (10^6 instead of 10^8).

An initial cryotest of the structure has been performed, funded by Evgenya Simakov through her Early Career Project.

.--002 .1332-002 .2585-002 3.9038c-002 3.9938c-002 2.8390c-002 2.8390c-002 2.4841c-002 2.4292c-002 1.7744c-002 1.4195c-002 1.4195c-002 1.9974c-003 3.5487c-003 3.5487c-003

Joint Losses Measurement with Trapped Mode

A different mode at 1.8 GHz is much more sensitive to joint losses. Allowed successful redesign of the joint.

20

Install into Helium Vessel

The helium vessel is constructed from titanium to be compatible with the vacuum flanges.

Cryotest of PBG Multicell Cavity

X

Cryotest Results

Measured cavity quality factor shows that the joint is working and the cavity is performing up to 4 MV/m accelerating gradient (limited by available RF power).

end view

25

- Conferences, most recently an invited talk by Sergey Arsenyev at the 2015 Superconducting RF conference
- Peer-reviewed Journal Publications
 - Applied Physics Letters (vol 108, 22603, 2016)
 - Physical Review Accelerators and Beams (vol 19, 081301, 2016)
- Sergey's PhD thesis
 - Photonic Band Gap Structures for Superconducting Radio-frequency Particle Accelerators
 (A decise on Dick Templein MIT and Frequency

(Advisors Rick Temkin, MIT, and Evgenya Simakov, LANL, accepted September 2016)

- First multi-cell superconducting accelerating cavity with a photonic-bandgap coupling cell has been built
 - niobium cavity with titanium helium vessel
 - novel tuning strategy implemented
 - new RF and vacuum seal developed
- Successful testing at cryogenic temperature verifies cavity performance
- Cavity now ready for tests with beam!