Advanced Additive Manufacturing Method for SRF Cavities of Various Geometries

DOE Nuclear Physics STTR Grant: DE-SC0007666

Presented by Marcos Ruelas

on behalf of Pedro Frigola, PI

DOE Nuclear Physics SBIR/STTR Exchange Meeting Aug. 6-7, 2015
Acknowledgments

STTR Collaborator: University of Texas El Paso (UTEP) W.M. Keck Center for 3-D Innovation, El Paso, TX

STTR Subcontractor: Thomas Jefferson National Accelerator Facility (JLab)- SRF Institute, Newport News, VA

T. Horn, O. Harrysson, H. West
Department of Industrial and Systems Engineering
North Carolina State University (NC State), Raleigh, NC

A. Murokh, R. Agustsson, S. Boucher, L. Faillace, M. Ruelas
RadiaBeam Technologies LLC, Santa Monica, CA

DOE NP STTR Phase I/II Grant DE-SC0007666
Outline

- RadiaBeam Technologies Overview
- AM Research History at RadiaBeam
- Overview of EBM AM Technology
- Goals and Relevance of Project
- Phase II Work
Who We Are

- Founded in 2004 as a spin-off from the UCLA Particle Beam Physics Laboratory
- Core mission is to provide well-engineered, high quality, cost-optimized accelerator systems and components, & develop novel accelerator technologies and applications
- ~50 employees, including 9 PhD scientists and 22 engineers
- Experience from US Labs, International Labs, Universities, and Industry
- Worldwide sales, service, and consulting
Facilities

- Two Machine shops
- Magnetic measurements
- RF (cold) test area
- Hot test cell (up to 2 MeV)
- Optics area
- Chemical cleaning and Clean rooms
- Total of 16,000 sq. ft. space
Capabilities

- Design
- Engineering
- Fabrication
- Assembly
- Testing
- Installation
- Service
Products

- Accelerator systems
 - Turnkey injectors
 - Transport lines
 - Industrial linacs

- Diagnostics
 - Beam profile monitors
 - Bunch length monitors
 - Charge, emittance, et cetera

- RF structures
 - RF photoinjectors
 - Bunchers
 - Linacs
 - Deflectors

- Magnet systems
 - Electromagnets
 - Permanent magnets
 - Systems (chicanes, final focus, spectrometers)
Accelerator Systems

- Designed specifically for customer’s application
- Wide variety of specs and options available
- Designed, built, delivered, and commissioned complete turnkey systems in < 9 months!

<table>
<thead>
<tr>
<th>Application</th>
<th>Energy</th>
<th>Average Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field-deployable high-energy radiography</td>
<td>1-4 MeV</td>
<td>10 – 100 W</td>
</tr>
<tr>
<td>Cargo Inspection/Fixed-installation Radiography</td>
<td>4-9 MeV</td>
<td>100 – 1000 W</td>
</tr>
<tr>
<td>Oncology</td>
<td>4-20 MeV</td>
<td>100 – 1000 W</td>
</tr>
<tr>
<td>E-beam Sterilization/Processing</td>
<td>10 Mev</td>
<td>10 – 50 kW</td>
</tr>
<tr>
<td>X-ray Sterilization/Processing</td>
<td>7.5 MeV</td>
<td>20 – 200 kW</td>
</tr>
</tbody>
</table>
Multiple Funding Agencies

SBIR, BAA, & commercial funded and self-funded R&D to develop new products and technical solutions
Additive Manufacturing Development at RadiaBeam
AM Development at RadiaBeam

- 2006 to present: DOE and DHS SBIR/STTR, as well as Internal R&D funded
 - Total of 7 Phase Is, and 4 Phase IIs
- Active collaboration with NC State, UTEP, JLab, UC Berkeley, LANL
- Developed accelerator designs and methods exploiting AM
 - NCRF accelerators (copper): US Patent 7,411,361: Method and apparatus for radio frequency cavity
 - Dissimilar metal joining (Inconel 718 to 316 SS): Applications in nuclear (fission and fusion) and concentrated solar power components (DOE Nuclear Energy Phase I/II (DE-SC0011826)
 - First to developed EBM AM process parameters for copper and niobium
 - C. Terrazas t. al., EBM Fabrication and Characterization of Reactor-Grade Niobium for Superconductor Applications, Proceeding of Solid Freeform Fabrication Symposium, UT Austin, August 4-5, 2014
Electron Beam Melting Additive Manufacturing (EBM AM) is a fabrication process where parts are built by melting thin layers of metal powder.

An electron beam melts each layer to a geometry defined by a CAD model.

EBM AM parts are fully-dense, functional parts.

EBM AM advantages:
- Cost/time savings
- Excellent material properties
- Freedom in design
ARCAM A2 TECHNICAL DATA

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build tank volume</td>
<td>250x250x400 mm and 350x350x250 mm (W x D x H)</td>
</tr>
<tr>
<td>Maximum build size</td>
<td>200x200x350 mm and Ø 300x200 mm (W x D x H)</td>
</tr>
<tr>
<td>Model-to-Part accuracy, long range(^1)</td>
<td>+/- 0.20 mm (3σ)</td>
</tr>
<tr>
<td>Model-to-Part accuracy, short range(^1)</td>
<td>+/- 0.13 mm (3σ)</td>
</tr>
<tr>
<td>Surface finish (vertical & horizontal)(^2)</td>
<td>Ra25/Ra35</td>
</tr>
<tr>
<td>Beam power</td>
<td>50–3500 W (continuously variable)</td>
</tr>
<tr>
<td>Beam spot size (FWHM)</td>
<td>0.2 mm–1.0 mm (continuously variable)</td>
</tr>
<tr>
<td>FB scan speed</td>
<td>up to 8000 m/s</td>
</tr>
<tr>
<td>Build rate(^3)</td>
<td>55/80 cm³/h (Ti6Al4V)</td>
</tr>
<tr>
<td>No. of Beam spots</td>
<td>1–100</td>
</tr>
<tr>
<td>Vacuum base pressure</td>
<td><1 x 10⁻⁴ mBar</td>
</tr>
<tr>
<td>Power supply</td>
<td>3 x 400 V, 32 A, 7 kW</td>
</tr>
<tr>
<td>Size and weight</td>
<td>1850 x 900 x 2200 mm (W x D x H), 1420 kg</td>
</tr>
<tr>
<td>Process computer CAD interface</td>
<td>PC</td>
</tr>
<tr>
<td>CAD interface</td>
<td>Standard: STL</td>
</tr>
<tr>
<td>Network</td>
<td>Ethernet 10/100/1000</td>
</tr>
<tr>
<td>Certification</td>
<td>CE</td>
</tr>
</tbody>
</table>

\(^1\) Long range: 100 mm, Short range: 10 mm, measured on Arcam Standard Test Part (ASTP).
\(^2\) Measured on Arcam Standard Test Part (ASTP). Settings optimized for fine surface quality/Settings optimized for high build speed.
Project Goals and Relevance

Project Goal: Develop EBM AM for Nb, and experimentally validate SRF performance of prototype component(s)

DOE NP Relevance: SRF cavities and ancillary components are a key technology for DOE NP (and others)
- Reduce or eliminate joints in current designs
- Integrated stiffeners for mitigation of: Lorentz force detuning, microphonics, pressure fluctuations
- Realize truly novel designs – more physics driven, less manufacturing driven
 - Very thin walls (<1mm) with lattice supports
 - Integrate the helium vessel and cavity?
Phase II EBM Process Optimization

• Year 1 concentrated on EBM process optimization
 • Feedstock powder
 • Hardware and software improvements to EBM machine
 • Fabrication of samples for material testing

• Year 2 focus on geometry optimization and SRF testing
EBM Parameter Development

- Iterative Design of Experiment (DOE)
- Improved as-EBM density > 8.55 g/cm³ (from a 8.51 g/cm³ in Phase I)
Microstructure

- EBM bar samples
 - Equiaxied grains in horizontal plane (~ 250 µm)
 - Elongated grains in vertical plane (~20 layers; ~1 mm)

Wrought Nb; equiaxed grains in all directions
Material Properties

<table>
<thead>
<tr>
<th></th>
<th>EBM Ti6Al4V [16]</th>
<th>Wrought Ti6Al4V (ASTM F1472)</th>
<th>EBM Copper</th>
<th>Wrought C10100 Cu</th>
<th>EBM (reactor grade) Nb</th>
<th>Wrought Reactor Grade Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>>99.9%</td>
<td>-</td>
<td>8.84 g/cm³</td>
<td>8.90 g/cm³</td>
<td>8.55 g/cm³</td>
<td>8.57 g/cm³</td>
</tr>
<tr>
<td>Electrical</td>
<td>-</td>
<td>-</td>
<td>97 % IACS</td>
<td>102 % IACS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Conductivity @ 20°C</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19</td>
<td>40</td>
</tr>
<tr>
<td>Thermal</td>
<td>-</td>
<td>-</td>
<td>390 W/m*K</td>
<td>391 W/m*K</td>
<td>50</td>
<td>53.7</td>
</tr>
<tr>
<td>Conductivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YS (Rp. 0.2)</td>
<td>950 MPa</td>
<td>860 MPa</td>
<td>76 MPa</td>
<td>69 MPa</td>
<td>135 MPa</td>
<td>110 MPa</td>
</tr>
<tr>
<td>UTS (Rm)</td>
<td>1020 MPa</td>
<td>930 MPa</td>
<td>172 MPa</td>
<td>220 MPa</td>
<td>225 MPa</td>
<td>226 MPa</td>
</tr>
<tr>
<td>Elongation</td>
<td>14 %</td>
<td>> 10%</td>
<td>-</td>
<td>-</td>
<td>35%</td>
<td>50%</td>
</tr>
</tbody>
</table>

RRR Measurements

- Performed at JLab SRF Institute using standard “4-probe method”
- Uniform SC properties
- $T_c \sim 9.1$ to 9.2 K, with sharp transitions
- As-EBM RRR $\sim 17-18$ (roughly half of feedstock material)
- RRR ~ 44 after BCP dip +800°C 3hr HV in Ti box
JLab TE011 cavity employs the removable probe as the center conductor in the coaxial resonator
- Surface resistance
- Quench field
- Compare to wrought Nb

Probe was EBMed and successfully leak checked

Tested at JLab
TE011 Test Results

TE011 Samples \((f=3.585 \text{ GHz})\)

- **Short pin as-machined**
- **Short pin + BCP (20\(\mu\text{m}\))**
- **Long pin + BCP (50\(\mu\text{m}\))**
- **Ingot Nb + BCP**

Graph Details:
- **y-axis:** \(R_s (\mu\Omega)\)
- **x-axis:** \(R_p (\text{mT})\)

Legend:
- Green circle: Short pin as-machined
- Purple circle: Short pin + BCP (20\(\mu\text{m}\))
- Red square: Long pin + BCP (50\(\mu\text{m}\))
- Blue diamond: Ingot Nb + BCP
EBM SRF Cavity Prototype Design

Fermilab: 3.9 GHz, 3rd Harmonic SRF Cavity Drawings – Rev. B
2/3/2006
Single cell cavity fabrication

- 3.8 GHz half-cells were AM using EBM technology
- RF surfaces were machined (turned), and half-cells were e-beam welded into two single-cell cavities
- 100µmBCP + annealing at 800° C/3h + 20µm BCP
SRF Test Results

- Qo, Eacc, and Hpeak low compare to wrought reactor grade cavity
- Encouraging results: Quench field corresponding to \(\sim 10 \text{ mT} \)
Phase II +

- Develop commercial end-group components
- Improving as-EBM material quality
 - Focus on AM process parameters near SRF surface(s)
- Improve “near-net-shape” capability
 - Improve as-EBM surface roughness; ~ Ra 10µm
 - Centripetal Barrel Polishing (CBP) + Electro polishing (EP)
- Partner with EBM platform manufacture to develop custom machine
Thank you!

Questions?
Extra slides
• Commercialized by ARCAM AB (Sweden) ~ 2000
• First machine sold in the US to NCSU in 2003
• Today ~ 100 machines in the US
• ~ 6 machines in academic institutions (2 at NCSU, 2 in UTEP)
• ORNL’s MDF partner with Arcam in 2012
Material testing

Figure 9: Vertical (a) and horizontal (b) micrographs of the EBM niobium showing elongated and irregular grains respectively, when etched with 1 part HF and 4 parts of HNO₃. The arrow depicts the build direction, and the scale shown is 230 μm.
Material testing

Results – EBM purity (XRD)

- XRD revealed clean Nb spectra
 - BCC structure
 - \(a = 0.33 \text{ nm} \)

<table>
<thead>
<tr>
<th></th>
<th>Feedstock Niobium (Reactor Grade – Type 1)</th>
<th>Phase-I EBM Niobium</th>
<th>Phase-II EBM Niobium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>8.57</td>
<td>8.40 – 8.51</td>
<td>> 8.55</td>
</tr>
<tr>
<td>RRR</td>
<td>40 - 50</td>
<td>18-19</td>
<td>17-18</td>
</tr>
<tr>
<td>Thermal Conductivity (W/m*K)</td>
<td>53.7</td>
<td>_</td>
<td>50</td>
</tr>
<tr>
<td>YS (Rp 0.2) MPa</td>
<td>110</td>
<td>_</td>
<td>135</td>
</tr>
<tr>
<td>UTS (Rm) MPa</td>
<td>226</td>
<td>_</td>
<td>225</td>
</tr>
<tr>
<td>Elongation</td>
<td>50 %</td>
<td>_</td>
<td>35 %</td>
</tr>
<tr>
<td>Fatigue strength @ 600 MPa</td>
<td>_</td>
<td>_</td>
<td>In process</td>
</tr>
<tr>
<td>Vickers Hardness (GPa)</td>
<td>0.76 – 1.3</td>
<td>0.82 – 0.86</td>
<td>0.90 – 0.95</td>
</tr>
</tbody>
</table>