Advance Additive Manufacturing Method for SRF Cavities of Various Geometries

DOE Nuclear Physics STTR Grant: DE-SC0007666

PI: Pedro Frigola

DOE Nuclear Physics SBIR/STTR Exchange Meeting Aug. 6-7, 2014
Acknowledgments

STTR Collaborator: University of Texas El Paso (UTEP) W.M. Keck Center for 3-D Innovation, El Paso, TX

C. Terrazas, S. Gaytan, J. Mireles, D. Espalin, F. Medina, R. Wicker, L. Murr

STTR Subcontractor: Thomas Jefferson National Accelerator Facility (JLab)- SRF Institute, Newport News, VA

R. Rimmer, J. Spradlin, P. Dhakal, J. Henry

T. Horn, O. Harrysson, H. West

Department of Industrial and Systems Engineering
North Carolina State University (NC State), Raleigh, NC

A. Murokh, R. Agustsson, S. Boucher, L. Faillace

RadiaBeam Technologies LLC, Santa Monica, CA

DOE NP STTR Phase I/II Grant DE-SC0007666
Outline

- RadiaBeam Technologies Overview
- AM Research History at RadiaBeam
- Overview of EBM AM Technology
- Goals and Relevance of Project
- Phase II Work
Founded in 2004 as a spin-off from UCLA’s Particle Beam Physics Lab

Core Mission:
- Provide well-engineered, high quality, cost-optimized accelerator systems and components
- Develop novel accelerator technologies and applications

Today: 40 employees
- Consists of PhD Scientists (7), Engineers (19), Machinists (6), Technicians (5), and Administrative (3)
- Experience from working at National Labs (BNL, FNAL, LLNL, LANL) and Industry (SureBeam, L-3, Siemens, Varian, Accuray)
Facilities

- Machine shop (“clean” and regular)
- Magnetic measurements
- RF (cold) test area
- Hot test cell (up to 2 MeV)
- Optics area
- Chemical cleaning and Clean rooms
- Total of 16,000 sq. ft. space
Capabilities

- Design
- Engineering
- Fabrication
- Assembly
- Testing
- Installation
- Service
Products

- Accelerator Systems
- RF structures
 - RF guns (particle sources)
 - Linear accelerators
 - Free Electron Laser (FEL) components
- Magnetic systems
 - Electromagnets
 - Permanent magnets
- Diagnostics
 - Beam profile monitors
 - Bunch length monitors
 - Charge, emittance, etc.

www.radiabeam.com
Accelerator Systems

- Designed specifically for customer’s application
- Wide variety of specs and options available
- Designed, built, delivered, and commissioned complete turnkey systems in < 9 months!

<table>
<thead>
<tr>
<th>Application</th>
<th>Energy</th>
<th>Average Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field-deployable high-energy radiography</td>
<td>1-4 MeV</td>
<td>10 – 100 W</td>
</tr>
<tr>
<td>Cargo Inspection/Fixed-installation Radiography</td>
<td>4-9 MeV</td>
<td>100 – 1000 W</td>
</tr>
<tr>
<td>Oncology</td>
<td>4-20 MeV</td>
<td>100 – 1000 W</td>
</tr>
<tr>
<td>E-beam Sterilization/Processing</td>
<td>10 Mev</td>
<td>10 – 50 kW</td>
</tr>
<tr>
<td>X-ray Sterilization/Processing</td>
<td>7.5 Mev</td>
<td>20 – 200 kW</td>
</tr>
</tbody>
</table>
• Fund R&D to develop new products and technical solutions
AM Research at RadiaBeam

- 2006 to present: DOE and DHS SBIR/STTR, as well as Internal R&D funded
 - Total of 6 Phase Is, and 3 Phase IIs
- Active collaboration with NC State, UTEP, JLab
- Developed accelerator designs and methods exploiting AM
 - NCRF accelerators (copper): US Patent 7,411,361: *Method and apparatus for radio frequency cavity*
 - SRF accelerators (niobium): Joint patent with JLab - pending: *Additive Manufacturing Method for SRF Components of Various Geometries*
- First to developed EBM AM process parameters for copper and niobium
 - C. Terrazas et al., *EBM Fabrication and Characterization of Reactor-Grade Niobium for Superconductor Applications*, Proceeding of Solid Freeform Fabrication Symposium, UT Austin, August 4-5, 2014
Electron Beam Melting Additive Manufacturing (EBM AM) is a fabrication process where parts are built by melting thin layers of metal powder.

An electron beam melts each layer to a geometry defined by a CAD model.

EBM AM parts are fully-dense, functional parts.

EBM AM advantages:

- Cost/time savings
- Excellent material properties
- Freedom in design
ARCAM EBM Overview

ARCAM A2 TECHNICAL DATA

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build tank volume</td>
<td>250x250x400 mm and 350x350x250 mm (W x D x H)</td>
</tr>
<tr>
<td>Maximum build size</td>
<td>200x200x350 mm and 300x200 mm (W x D x H)</td>
</tr>
<tr>
<td>Model-to-Part accuracy, long range¹</td>
<td>+/- 0.20 mm (3σ)</td>
</tr>
<tr>
<td>Model-to-Part accuracy, short range¹</td>
<td>+/- 0.13 mm (3σ)</td>
</tr>
<tr>
<td>Surface finish (vertical & horizontal)²</td>
<td>Ra25/Ra35</td>
</tr>
<tr>
<td>Beam power</td>
<td>50–3500 W (continuously variable)</td>
</tr>
<tr>
<td>Beam spot size (FWHM)</td>
<td>0.2 mm–1.0 mm (continuously variable)</td>
</tr>
<tr>
<td>EB scan speed</td>
<td>up to 8000 m/s</td>
</tr>
<tr>
<td>Build rate²</td>
<td>55/80 cm³/h (Ti6Al4V)</td>
</tr>
<tr>
<td>No. of Beam spots</td>
<td>1–100</td>
</tr>
<tr>
<td>Vacuum base pressure</td>
<td><1 x 10⁻⁴ mBar</td>
</tr>
<tr>
<td>Power supply</td>
<td>3 x 400 V, 32 A, 7 kW</td>
</tr>
<tr>
<td>Size and weight</td>
<td>1850 x 900 x 2200 mm (W x D x H), 1420 kg</td>
</tr>
<tr>
<td>Process computer/CAD interface</td>
<td>PC</td>
</tr>
<tr>
<td>CAD interface</td>
<td>Standard: STL</td>
</tr>
<tr>
<td>Network</td>
<td>Ethernet 10/100/1000</td>
</tr>
<tr>
<td>Certification</td>
<td>CE</td>
</tr>
</tbody>
</table>

¹ Long range: 100 mm, short range: 10 mm, measured on Arcam Standard Test Part (ASTP).
² Measured on Arcam Standard Test Part (ASTP).
³ Settings optimized for fine surface quality / settings optimized for high build speed.
Project Goals and Relevance

- **Project Goal:** Develop EBM AM for Nb, and experimentally validate SRF performance of prototype component(s)

- **DOE NP Relevance:** SRF cavities and ancillary components are a key technology for DOE NP (and others)
 - Reduce or eliminate joints in current designs
 - Integrated stiffeners for mitigation of: Lorentz force detuning, microphonics, pressure fluctuations
 - Realize truly novel designs – more physics driven, less manufacturing driven
 - Very thin walls (<1mm) with lattice supports
 - Integrate the helium vessel and cavity?
Phase II EBM Process Optimization

- Phase II (Year 1) concentrated on EBM process optimization
 - Feedstock powder
 - Still using reactor grade Nb (RRR~40)
 - Hardware and software improvements to EBM machine
 - New machine interior
 - Operating vacuum improved to low 10-5 Torr (from mid 10-4 Torr)
 - Process monitored real-time with RGA
 - Fabrication of samples for material testing
EBM Parameter Development

- Iterative Design of Experiment (DOE)
 - Improved as-EBM density > 8.55 g/cm³ (from a 8.51 g/cm³ in Phase I)
Microstructure

- EBM bar samples
 - Equiaxed grains in horizontal plane (~250 µm)
 - Elongated grains in vertical plane (~20 layers; ~1 mm)

Wrought Nb; equiaxed grains in all directions
• Performed at JLab SRF Institute using standard “4-probe method”
• Uniform SC properties
• \(T_c \approx 9.1 \) to 9.2 K, with sharp transitions
• As-EBM RRR \(\approx 17-18 \) (roughly half of feedstock material)
• RRR \(\approx 44 \) after BCP dip +800° C 3hr HV in Ti box
SRF Testing

- JLab TE011 cavity employs the removable probe as the center conductor in the coaxial resonator
 - Surface resistance
 - Quench field
 - Compare to wrought Nb
- Probe was EBMed and successfully leak checked
- Tested at JLab
Preliminary results

![Graph showing preliminary results for f = 3.585 GHz, radbeam sample]

- **As machined**
- **BCP (20um)**
- **Ingot Nb (BCP)**

Legend:
- Black square: As machined
- Black circle: BCP (20um)
- Red square: Ingot Nb (BCP)
EBM SRF Component Prototypes

Fermilab: 3.9 GHz, 3rd Harmonic SRF Cavity Drawings – Rev. B

Figure 17: HOM coupler used for LEP-II at CERN (Left), TESLA-JLab type coupler (Courtesy of R. Rimmer) (Right).
Challenges (Opportunities)

- Improving as-EBM material quality
 - More parameter optimization near SRF surface(s)
- As-EBM part is rough, “near-net-shape”
 - Improve as-EBM surface roughness; ~ Ra 10µm
 - Centripetal Barrel Polishing (CBP)
 - Laser polishing?
- Size
 - Relatively small (effective) build envelope (~200 mm dia. x 200mm)
- Dedicated Nb EBM machine?

Arcam Q10 - Highlights

- 30% higher productivity
- 30% improved resolution
- Closed powder handling
- Quality verification with Arcam LayerQam™
- Software adapted to volume production
Thank you!

- Questions?
EBM material development summary

<table>
<thead>
<tr>
<th>Property</th>
<th>EBM Ti6Al4V [I]</th>
<th>Wrought Ti6Al4V (ASTM F1472)</th>
<th>EBM Copper</th>
<th>Wrought C10100 Cu</th>
<th>EBM (reactor grade) Nb</th>
<th>Wrought Reactor Grade Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>>99.9%</td>
<td>8.84 g/cm³</td>
<td>8.90 g/cm³</td>
<td>8.55 g/cm³</td>
<td>8.57 g/cm³</td>
<td></td>
</tr>
<tr>
<td>Electrical Conductivity @ 20°C</td>
<td>-</td>
<td>-</td>
<td>97% IACS</td>
<td>102% IACS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RRR</td>
<td>-</td>
<td>-</td>
<td>19</td>
<td>40</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Thermal Conductivity (@ 21°C)</td>
<td>-</td>
<td>-</td>
<td>390 W/m*K</td>
<td>391 W/m*K</td>
<td>50 W/m*K</td>
<td>53.7 W/m*K</td>
</tr>
<tr>
<td>YS (Rp 0.2)</td>
<td>950 MPa</td>
<td>860 MPa</td>
<td>76 MPa</td>
<td>69 MPa</td>
<td>135 MPa</td>
<td>110 MPa</td>
</tr>
<tr>
<td>UTS (Rm)</td>
<td>1020 MPa</td>
<td>930 MPa</td>
<td>172 MPa</td>
<td>220 MPa</td>
<td>225 MPa</td>
<td>226 MPa</td>
</tr>
<tr>
<td>Elongation</td>
<td>14 %</td>
<td>> 10%</td>
<td>-</td>
<td>-</td>
<td>35 %</td>
<td>50 %</td>
</tr>
<tr>
<td>Reduction Area</td>
<td>40%</td>
<td>> 25%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fatigue strength @ 600 MPa</td>
<td>>10 M cycles</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hardness</td>
<td>33 HRC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Modulus of Elasticity</td>
<td>120 GPa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ARCAM EBM Overview

- Commercialized by ARCAM AB (Sweden) ~ 2000
- First machine sold in the US to NCSU in 2003
- Today ~ 100 machines in the US
- ~ 6 machines in academic institutions (2 at NCSU, 2 in UTEP)
- ORNL’s MDF partner with Arcam in 2012

https://www.youtube.com/watch?v=iegi6D5MKmk
Material testing

Figure 9: Vertical (a) and horizontal (b) micrographs of the EBM niobium showing elongated and irregular grains respectively, when etched with 1 part HF and 4 parts of HNO₃. The arrow depicts the build direction, and the scale shown is 230 μm.
Material testing

Results – EBM purity (XRD)

- XRD revealed clean Nb spectra
 - BCC structure
 - a = 0.33 nm

<table>
<thead>
<tr>
<th>Property</th>
<th>Feedstock Niobium (Reactor Grade – Type 1)</th>
<th>Phase-I EBM Niobium</th>
<th>Phase-II EBM Niobium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>8.57</td>
<td>8.40 – 8.51</td>
<td>> 8.55</td>
</tr>
<tr>
<td>RRR</td>
<td>40 - 50</td>
<td>18-19</td>
<td>17-18</td>
</tr>
<tr>
<td>Thermal Conductivity (W/m*K)</td>
<td>53.7</td>
<td>_</td>
<td>50</td>
</tr>
<tr>
<td>YS (Rp 0.2) MPa</td>
<td>110</td>
<td>_</td>
<td>135</td>
</tr>
<tr>
<td>UTS (Rm) MPa</td>
<td>226</td>
<td>_</td>
<td>225</td>
</tr>
<tr>
<td>Elongation</td>
<td>50 %</td>
<td>_</td>
<td>35 %</td>
</tr>
<tr>
<td>Fatigue strength @ 600 MPa</td>
<td>_</td>
<td>_</td>
<td>In process</td>
</tr>
<tr>
<td>Vickers Hardness (GPa)</td>
<td>0.76 – 1.3</td>
<td>0.82 – 0.86</td>
<td>0.90 – 0.95</td>
</tr>
</tbody>
</table>
Project Schedule

- **1.** Design prototype SRF Cavity
 - 1.1. Cavity design choice
 - 1.2. Engineering and CAD model

- **2.** Procurement of feedstock material
 - 2.1. Nb wire
 - 2.2. Nb powder atomization

- **3.** Upgrades to EBM machine
 - 3.1. Procurement Arcam interior
 - 3.2. Pass-through fabrication
 - 3.3. Cleaning and installation

- **4.** EBM optimization for RRR niobium
 - 4.1. EBM parameter optimization
 - 4.2. Material testing and validation
 - 4.3. EBM TE011 cavity probe
 - 4.4. Surface treatment
 - 4.5. DC and RF probe testing

- **5.** EBM Cavity fabrication and testing
 - 5.1. EBM Cavity fabrication
 - 5.2. Mounting and welding
 - 5.3. Mechanical testing
 - 5.4. Surface treatment
 - 5.5. Assembly, bake, and VTA testing

- **6.** Milestones
 - 6.1. Project-Cavity review at JLab
 - 6.2. Project-Machine review at UTEP
 - 6.3. Demonstrate DC and RF SC properties
 - 6.4. Demonstrate mechanical properties
 - 6.5. Single cell cavity high power testing
 - 6.6. End Phase II