

Ultrafast High Voltage Kicker System Hardware for Ion Clearing Gaps

Alexander Smirnov, Ph.D.

DOE SBIR Award DE-SC0019684

DOE NP SBIR/STTR Phase II PI Exchange Meeting, August 17, 2023

- Founded in 2004
- ~50 employees and growing
- 30,000 ft² headquarters in Santa Monica, CA

• Accelerator R&D, design, engineering, manufacturing and testing all under one roof in a dynamic, small-business setting

Tour: Machine Shop

- Multiple CNC milling and turning centers, > \$3 million investment
- Dedicated "clean shop" for RF and UHV machining
- Full-suite of inspection equipment, including CMM
- 10 highly-skilled machinists
- ISO 9001 compliant quality system

The ionization scattering of the electron beam with residual gas molecules causes ion trapping in the electron rings, both in the collider and electron cooling system. The trapped ions may cause emittance growth, tune shift, halo formation, and coherent coupled bunch instabilities. Therefore, the beam temporal structure needs gaps to clear the ions to prevent them from accumulating turn after turn. Typically, the gap in the bunch train has a length of a few percent of the ring circumference.

- A fast deflector (kicker) is needed for EIC ERL cooler to form a ~100ns gap at ~1MHz (37.5MHz, ultimately 98.5MHz microbunches)
- Aperture 14 mm
- Maximum insertion length is 75cm
- Stripline kicker is a practical solution for such need
- Radiabeam is building a kicker and twochannel pulsed power source intended to be installed and tested at Jefferson Lab

Parameter	Value			
Deflecting angle	20 mrad (deflecting voltage 140 kV)			
Flange-to-flange length	50 – 60 cm			
Electron Beam Energy	7 MeV			
Bunch Repetition Rate	37.5 MHz			
Bunch rms transverse size	σ=1 mm			
Deflecting Pulse Width	92 ns flat-top required to deflect 4 out of			
	31 bunches in train			
Kicker operation per rate	1.4 MHz (715ns between the pulses)			
Rise + Fall Time	<20 ns (10ns desired)			
Aperture (gap)	14 mm			
	27.6 kW peak power per channel (55.2 kW			
Required pulsed power	total); 3.8 kW average power per channel			
	(7.6 kW total)			

RF design

Beam dynamics study

Exit offset spectrum over injection parameters

Beam loss with various interaction lengths

20 mrad Kick L_{eff} (mm) g (mm) V_p (V)2Offset _i (mm)	yes 200 14 2275	yes 300	yes	yes	Vac	1000 Co. 10		
$\begin{array}{c} L_{\rm eff}(\rm mm) & 2 \\ g(\rm mm) \\ V_{\rm p}(\rm V) & 2 \\ Offset_i(\rm mm) \end{array}$	200 14 2275	300	100		yes	no	yes	no
g (mm) $V_{\rm P}$ (V) 2 Offset _i (mm)	14 2275	1 4	400	600	400	400	600	600
$V_{\rm p}({\rm V})$ 2 Offset _i (mm)	2275	14	14	14	14	14	14	14
Offset _i (mm)		1560	1175	790	1175	1175	790	790
	0	0	0	0	0	0	0	0
$I_{11}t_i (mm)$	0	0	0	0	-5	-5	-6	-6
Beam loss $(\%)$ 1×	(10^{-6})	8.8×10^{-5}	0.0027	0.21	5.4×10^{-5}	4.7×10^{-5}	1.6×10^{-3}	4.8×10^{-3}
P_b (W) LERF 4 ×	$< 10^{-4}$	0.04	1.1	87.3	0.022	0.02	2	2
P_b (W) JLEIC (0.04	3.4	104.5	$8.1 imes 10^3$	2.1	1.8	178	186
P_{RF} (kW)	14.5	6.8	3.85	1.75	3.85	3.85	1.75	1.75
CST simulation								
Beam loss (%) 7×	(10^{-6})	4×10^{-5}	1.6×10^{-3}	0.38	4.65×10^{-5}	4.66×10^{-5}	3.6×10^{-3}	3.6×10^{-3}
$P_b(W)$ LERF 0	.003	0.02	0.66	158	0.02	0.02	1.5	1.5
P_b (W) JLEIC 0	0.27	1.55	62	1.47×10^4	1.8	1.8	140	140
Space charge								
Beam loss (%)	-	2	-	-	$1.8 imes 10^{-3}$	$4.7 imes 10^{-5}$	-	-
$P_b(W)$ LERF	-	-	-	-	0.7	0.02	-	-
$P_b(W)$ JLEIC	-	-	-	-	70	1.8	-	-

40cm interaction length

- Standard 1-5/8" EIA compatible
- 60 cm flange-to-flange
- 40 cm interaction length
- XYZ Positioning stage
- Independent electrodes alignment
- Dielectric-free

Pulser testing setup

- 50cm-long 50 Ohm stripline, VSWR <1.1 from DC to 1 GHz
- Si MOSFET and GaN water-cooled high-power switches
- 500 V / 10 A DC supply

¹⁰ Pulser testing (Si MOSFET)

Achieved:

- 7ns rise and 6ns fall times at 100 ns flat-top with 87ps rms timing jitter
- Highly stable and controllable pulse length
- 1.4 MHz repetition rate
- 50% efficiency

¹¹ Pulser testing (Gallium Nitride)

Achieved:

- 6.8ns rise and 4.5ns fall times @ 107 ns flat-top with 100ps rms timing jitter
- Highly stable and controllable pulse length
- 1.4 MHz repetition rate
- 82% efficiency
- Failed at 800 V

¹² RadiaBeam pulser development (GaN) - v1

Achieved:

- 10 ns rise and 11 ns fall times @ 107 ns flat-top
- 1.4 MHz repetition rate (short bursts)
- 85% efficiency

Positive channel Negative channel 1.4 MHz bursts

¹³ RadiaBeam pulser development (GaN) – v2

Control Logic

Assembled Pulser PCB

12V supply

Simplified circuit diagram

¹⁴ RadiaBeam pulser development (GaN) – v2

100 ns pulse width

Parameter	Value
Output voltage	1200 V
Pulse length	from 25 ns
Rise/fall time	3.9/11 ns
Repetition rate	up to 1.4 MHz
Dimensions	3.15 x 2.84 x 1 in

RadiaBeam pulser development (GaN) – v2

A Ch2

r 120V

- 100 us (150 pulses) burst
- 1200 V, 100 ns FWHM
- 1.4 MHz rep rate
- 10% of the required duty factor is achieved

RadiaBeam

¹⁶ RadiaBeam pulser development (GaN) – v3

• 4 transistors

- Improved cooling
- Testing is in progress

- Kicker EM and mechanical design are complete
- Pulser development status: 1200 V, 4ns/11ns rise/fall, 1.4 MHz, 10% power
- Improve GaN-based pulser cooling to achieve full 3.8 kW output
- Assemble two-channel pulser with control system
- Kicker fabrication, assembly and tests
- Installation and beam-based tests at JLAB