

Diaphanous Diamond for X-ray Beam Imaging Update DOE STTR DE-SC0019705 (RMD C20-30)

- Started in 2020
- CoVID: BNL closed, RMD open
- Appointment change (RI Change: SBU to BNL)

Next-generation synchrotron sources trend toward use of highflux beams and/or beams which require enhanced stability and precise understanding of beam position and intensity from the front end of the beamline all the way to the sample.

Imaging beam-line monitors needed

- Withstand radiation environment
- Withstand high temperatures
- Minimize beam interaction below 20 keV

Thin, "diaphanous" diamond an ideal candidate

Concept: Crossed-strip readout

- Bias applied row-by-row
- Current in each col read out
 - NOT photon counting
 - Discrete components
 - Application Specific Integrated Circuit (ASIC)
- Diamond detectors
 - 100-um thick poly-crystalline from E6:
 - requires 10 V bias for readout
 - Leakage/Dark Current per area: 6 fA/mm²
 - Capacitance per area: 0.5 pF/mm²
 - 70-um thick single crystalline from Innovative Carbon:
 - requires 20 V bias for readout
 - Leakage/Dark Current per area: 12 pA/mm²
 - Capacitance per area: 0.72 pF/mm²

Phase-2 Objectives and Tasks

- 1. Transfer photolithographic fabrication technology
 - Fabricate test structures at RMD (RMD)
 - Order diamond substrates and thin if necessary (RMD)
 - Fabricate devices at RMD (RMD & SBU)
 - Fabricate control devices at Stony Brook (SBU)
 - Test at NSLS light source using existing electronics (SBU)
- 2. Continue Exploration of alternative sources of electronic grade diamond (RMD)
 - Evaluate diamond fabrication options
- 3. Develop and transfer readout technology
 - Modify external/discrete ADC and Interface (RMD)
 - Front-end ASIC

Demonstrate the performance of the prototype

- Integrate components (RMD)
- Modify firmware and software (RMD)
- Test at NSLS light source (BNL)

Diamond Detectors: ⁸⁵Kr beta emission (251 keV avg., 687 keV endpoint)

Table 1. Diamond Vendors.					
Vendor	Material	Area (mm ²)	Thickness (um)		
Element 6	Poly-crystal	5x5	100		
Applied Diamond (Delaware Diamond Knives)	Grown	5x5	70		
IIa Technologies					
Innovative Carbone Group, LLC	Grown	5x5	70		

Electronic grade diamond (fabrication options)

Electronic Grade CVD Growth Concept

- Reactors commercially available
- Need UHV: low N₂
- Seeds for single crystal (best for thin)
- Use Innovative Carbon (access to large seeds)

Name	Website	Address	Comments
ElementSix	https://e6cvd.com/us/	Element Six Technologies Ltd Kings Ride Park Ascot, Berkshire UK SL5 8BP	4.5x4.5x0.5 mm ³ \$2,260
Innovative Carbon Group LLC (C6 Materials)		Innovative Carbon Group LLC 717 Forest Ave. 2nd Floor Lake Forest, IL 60045 USA	7x7x0.15 mm ³ \$2,400
Ziemer	www.shine-on-me.ch	Ziemer Swiss Diamond Art AG Allmendstrasse 11 2562 Port Switzerland	5x5x0.2mm ³ ppb
Diamond Elements	http://www.diamondele ments.com/	Diamond Elements Pvt. Ltd. 2nd Floor Sham House, Opp Science Center, Citylight, Surat- 395007, Gujarat, India.	4.5x4.5x0.3 mm ³ \$2,480
Chenguang	https://cnchenguang.e n.made-in-china.com	Chenguang Machinery & Electric Equipment Co., Ltd. Changsha, China /product/uXvnxCcMnqro/China- Electronic-Grade-Single-Crystal- Diamond-Plates-for-Quantum- Optics.html	Products not listed on website
Applied Diamond, Inc.	http://usapplieddiamo nd.com/	3825 Lancaster Pike, Wilmington, DE 19805	Limited charge collection
Great Lakes Crystal Technologies	https://glcrystal.com	4942 Dawn Ave, East Lansing, MI 48823	Products not listed on website

Thin UHP Diamond Substrates

- A couple 5 mm x 5 mm x 0.15 mm
- Processed
 - 7mm x 7 mm
 - ~60-100 nm finish (best effort)
 - 50 nm thick metal
- Diamonds at BNL/SBU
 - UHP 190 um thick 5 mm x 5 mm (#9)
 - UHP ~80 um thick 5 mm x 5 mm (#8)
 - 70-um thick sample (#2) from Innovative Carbone 5 mm x 5 mm
 - 100-um thick sample polyxtal from E6, 5 mm x 5 mm
 - 100-um thick sample polyxtal from E6, 1 cm x 1 cm

Test device fabrication and characterization measurements in progress reports

From Stony Brook

Business Sensitive

Diaphanous diamond x-ray beam imaging

Fabrication and Testing at Stony Brook University and BNL (NSLS-II, CFN)

- Innovative Carbon (size: 5.2 mm x 5.2 mm x 0.07 mm and pitch: 100 μ m)
- UHP Poly Diamond (size: 5 mm x 5 mm x 0.08 mm and pitch: 100 μm)

- **Initial phase**: to fabricate and test diamonds using our existing diamond Imaging system.
 - Larger area, polycrystalline, new vendors
- Testing centered on imaging and x-ray beam-induced current (XBIC).
 - XBIC determines the material's charge collection and uniformity which is critical for a good x-ray imaging sensor.
- Three imaging detectors are shown to the left that were fabricated using facilities at BNL (Instrumentation Division, CFN).
- Several beamtimes were used to study this material, however, the SBU electronics could not be used because the Xilinx FPGA failed and was not available (end of 2021).

Screenshot of SBU control panel

XBIC at the XFP Beamline, NSLS-II early results

• All diamond material showed promise, but there were still some uniformity issues at some biases

100 µm pinhole, 3mm Al

Ceramic Printed Circuit Boards

MPT

Micro-Precision Technologies, Inc. 10 Manor Parkway, Suite C Salem, New Hampshire 03079 603-893-7600 www.micropt.com

- Exotic PCB material expensive
- Good wire-bonding

Initial test PCB

XFP Beamtime: 7mm x 7mm single crystal diamond

- Electronic grade single crystal diamond 7 x 7 mm² (0.1 mm thick)
- Promising new large area single crystal diamond
- Good bias response, uniformity, and flux response (in positive bias)

Multi-channel ASIC development for readout (G. DeGeronimo)

ASIC (Amplifier) Requirements						
Requirement	Units	Value	Comments			
Number of channels		32				
Ranges		3	5 pA to 20 nA, 5 nA to 20 uA, 5 uA to 20 mA			
Dynamic range		4×10 ⁹	4000 each range			
Readout rate	Hz	60				
Polarity		Selectable				
Noise floor	pA rms	1				
IC area	mm ²	25	Maximum			
IC dimensions	mm	~5	Square			
Max. power	mW/ch	2 to 40	Configuration dependent			
Supply Voltage(s)	V	1.8				
Number of pads		128	Maximum			
Process Technology			TSMC 0.18 um HV, DFE			

- $\circ~$ Bias strip (scan) and orthogonal readout strip
- Number of channels and ranges
- Front-end amplifier designed and simulated

Current Amplification Stage

Test PCB with DMFE ASIC

• Planned to include in next round of imaging tests.

ASIC: TSMC 0.18um via Muse Semiconductor Business Sensitive

Testing at NSLS-II: July 30 and 31, 2022

Business Sensitive

Results (July 30, 2022)

- Successfully scanned diamond detector
- ASIC not working as expected

Business Sensitive

- Design and Build current input PCB
- Replace ASIC on existing PCB (or build a second PCB)
- Test ASIC and determine offset specifications for input and output
- If ASIC is responsive: Connect output to MUX (write VB.net code for MUX)

Summary

Current research Status

- Have acquired additional 7 mm × 7 mm substrates from Innovative Carbon, but problems (lost batch in polishing)
 - Have 5 mm × 5 mm substrates from E6 and UHP polycrystalline diamond
- Data acquisition and cabling

BNL/SBU status

- Dr. Muller moved from Stony Brook University to Brookhaven National Lab.
- Changed Research Partner for STTR from SBU to BNL (approved by DOE: need subcontract with BNL)
- NCE to October to complete demonstration of ASIC measurements with X-rays
 - Allows additional beamtimes

Funds remaining for RI: Covid de-phased efforts

STM Comparison – BNL/SBU results

