

Lanthanide Isotope Purification

CF Technologies, Inc. Hyde Park, MA

Presented by: Laura Sinclair, Ph.D.

CF Tech Introduction

Our mission is to develop innovative, sustainable processes and products that meet and exceed our customers' technical and economic needs.

- In the Critical Fluid business for 30+ years
- 11 Patents
- Commercial Extraction Experience Design, build, start-up, process improvements & maintenance
- Prior Metals Separation work –Separation of concentrated mixed rare earth elements from coal waste streams and phosphate waste
- Laura Sinclair, PhD prior work Rare earth element extraction from bastnäsite concentrate

MIT Nuclear Reactor Laboratory

- Interdepartmental center that operates a high performance 6 MW nuclear research reactor.
- Thermal neutron flux of 5.6 x 10^{13} n/cm²s

Lanthanide Isotopes

- Medical isotopes used in cancer treatment
- ⁹⁰Y, ¹⁵³Sm, and ¹⁷⁷Lu based drugs approved
- ¹⁶⁶Ho and ¹⁶¹Tb based drugs
 in clinical trials
- Rapid market growth
- >600,000 patients/year by 2025

Images: ITM Garching, Hennrich 2019

radionuclide (¹⁷⁷Lu) + chelator (DOTA) + targeting peptide (octreotate)

Supply Chain

• Goal: separate micro amounts of ¹⁷⁷Lu from macro amounts of ¹⁷⁶Yb

Current Options

Alternative	Advantages and Disadvantages			
Aqueous ion	Advantages:			
exchange	Chemicals are cheap and readily available			
chromatography	Disadvantages:			
	Requires multiple stages to achieve desired purity and concentration, resulting in long processing			
	times (6-8 hours)			
	Methods are often limited to small target sizes (~150 mg) due to low separation factors.			
Extraction	Advantages:			
chromatography	ny Suitable for large targets (>300 mg)			
	Disadvantages:			
	Complex, many stages and resin types required			
	The process is up to 16 hours and may need to be repeated multiple times to achieve desired purity			
Cementation	Advantages:			
	Applicable to medium-sized targets (at least 200 mg)			
	Processing times are relatively short (3-4 hours), but may require extraction chromatography to			
	clean up product			
	Disadvantages:			
	Residual mercury can be present which is a health risk for patients. One study found 3-19 ppm Hg			

Our solution

- Non polar solvents allow for innovative chemistries
- 4-5 hours (current processes=8-16 hours)
- Single column pass
- Cheap, off-the-shelf chemicals

Our solution

Irradiation Targets

34-72 mg ¹⁷⁶Yb as an oxide

Results

(Eol=End of Irradiation)

Results cont'd

	Target	Run A	Run B
Injected Activity		64.6 mCi	313 mCi
¹⁷⁷ Lu Recovery (¹⁷⁷ Lu recovered/ ¹⁷⁷ Lu injected)	>85%	107%*	91%
¹⁷⁶ Yb Recovery	>85%	87%	N/A
Decontamination Factor	>10 ⁵	>1.8 x 10 ⁶	>9.0 x 10 ⁵
Time to Recover Lu	<8 hours	4 hours	4.5 hours
Recovered ¹⁷⁷ Lu meets European Pharmacopeia purity standards?	 ¹⁷⁵Yb<0.07% Cu<1 μg/GBq Zn<1 μg/GBq Pb<0.5 μg/GBq ¹⁷⁶Yb<0.1 μg/GBq after 9 days 	Yes	Yes
Recovered ¹⁷⁶ Yb suitable for re- irradiation?	¹⁷⁴ Yb<0.44% Cu< 43 μg/g Zn<23 μg/g Pb<43 μg/g	Yes	N/A

*Recoveries >100% attributed to background radiation on sodium iodide detector

Technical & Management Team

John Moses President and Founder WPI, BU Innovative Design, Scale-Up **MIT Research Affiliate** CF Tech since 1989

John Markiewicz Chem/Chem E, Sr. Technologist U-Pittsburgh, UNH Clean Energy, Oil Refinery Scale-up & Commission CF Tech partner/employee since 1996

Laura Sinclair, Ph.D R&D Chem Engineer U-Toronto, Cornell Idaho National Lab Experimental Design **DOE R&D Project Lead** CF Tech since 2018

Frank Chan, Ph.D R&D Chem Engineer Monash U, Michigan TU NREL, Clean Energy Research & Analysis Lead CF Tech since 2021

Jessica Sweeney

Vice President **BBA Hofstra U Emerging Leaders MBA** Sales, Operations, Strategy CleanTech Open CF Tech since 2006

Acknowledgements

- Idaho National Laboratory
 - Bob Fox
 - Mary Case
- MIT Nuclear Reactor Laboratory
 - Gordon Kohse
 - Mike Ames
 - Thomas Bork
- DOE
 - Ethan Balkin
 - Michelle Shinn

Massachusetts Institute of Technology Nuclear Reactor Laboratory

Thank You!