High Performance Glass Scintillators for Nuclear Physics Experiments

□ Scintilex

□ Electromagnetic Calorimeter Projects

Examples of homogeneous calorimeters

Experiment Requirements and STTR Goals

Project Overview and Results

Outlook

Principal Investigator: Tanja Horn Business Official: Ian L. Pegg

Award: DE-SC0020619

Scintilex Overview

Main focus: design and construction of instrumentation based on Cherenkov and scintillation light using novel materials

Applications: particle detection in nuclear physics experiments and homeland security; also medical

Activities and expertise

- R&D new detector materials
- Pilot testing and scale up; hardware
- Software development and DAQ systems

Activities related to scintillator material

- > Jefferson Lab (JLab): EM calorimeters detectors: TCS@NPS, Hy(F)CAL ...
- Electron-Ion Collider (EIC): eRD1, eRD105, EPIC Detector
- PANDA EMCal test runs

Scintillation Detector Basics: Electromagnetic Showers

Dominant processes at high energies (E > few MeV)

Photons : Pair production

$$\sigma_{\text{pair}} \approx \frac{7}{9} \left(4 \, \alpha r_e^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}} \right)$$

= $\frac{7}{9} \frac{A}{N_A X_0}$ [X₀: radiation length] [in cm or g/cm²]

Absorption coefficient:

$$\mu = n\sigma =
ho rac{N_A}{A} \cdot \sigma_{ ext{pair}} = rac{7}{9} rac{
ho}{X_0}$$

Electrons : Bremsstrahlung

$$\frac{dE}{dx} = 4\alpha N_A \ \frac{Z^2}{A} r_e^2 \cdot E \ \ln\frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$

$$\bigstar E = E_0 e^{-x/X_0}$$

Electromagnetic Calorimeters in Nuclear physics

In nuclear physics, calorimetry refers to the detection of particles, and measurements of their properties, through the total absorption in a block of matter, the calorimeter detector

Calorimeters make use of various detection mechanisms, e.g.,

➡ ○ Scintillation

Cherenkov radiation

 \circ lonization

Types of Electromagnetic Calorimeters

Two general classes of calorimeters

Sampling Calorimeters: Layers of passive absorber (such as Pb or Cu) alternate with active detector layers such as Si, scintillator, liquid argon etc.

Homogeneous Calorimeters: A single medium serves as both absorber and detector, e.g., crystals (BGO, PbWO₄, ...) or glass scintillators

Precision measurements in nuclear physics experiments require homogeneous calorimeters

Requirements on Scintillator Materials

Conversion of energy into visible light – Light Yield

□ Attenuation Coefficient – Radiation length

□ Scintillation Response – emission intensity, decay kinetics

Emission spectrum matching between scintillator and photo detector – emission peak

□ Chemical stability and radiation resistance – induced absorption coefficient

 \Box Linearity of light response with incident photon energy – LY(100µs)/LY(10ms)

□ Moliere radius for lateral shower containment

1. Examples of Homogeneous EM Calorimeters at JLAB

Forward CAL Insert (Hall D)

Neutral Particle Spectrometer (Hall A/C)

2. Homogeneous Electromagnetic Calorimetry at EIC

□ EIC EMCal: central and auxiliary detectors

Large-volume detectors requiring large numbers of homogeneous scintillator blocks and custom shapes

Crystals are expensive (\$15-25/cm³) – EIC barrel EMCal not affordable

Glass is simpler and cheaper to produce

Auxiliary detectors not shown

Glass Scintillator Formulations

Phase 1: Process Optimization to Prevent Non-Uniformities

Shortcoming of earlier work: macro defects that can become increasingly acute on scale up

Developed new processing method at CUA/VSL/Scintilex

Sample made at CUA/VSL based on previous DSB:Ce work

CINTILEX

Samples made at CUA/VSL/Scintilex with our new method

DSB:Ce glass block manufactured in Europe for Nuclear Physics Experiments - macro defects not under control and become increasingly acute on scale-up. \rightarrow not acceptable for homogenous calorimeters

Scintilex formulations and production method eliminate imperfections, even for larger-dimension blocks

Phase 2: Scale-up and Larger Scale Production

□Scintilex in collaboration with the VSL at CUA has made much progress with the development and fabrication of SciGlass over the last 2 years

SciGlass of length 20 cm, and now 40 cm blocks, can now be produced routinely – most recently 25 blocks of 40 cm length. Additional batches are planned for prototype tests, including different shapes, under Phase 2A

SciGlass Characterization

Longitudinal and transverse transmittance of 40 cm glass blocks

- Maintaining optical properties is of the most significant challenges in scaling up scintillating glass for nuclear physics. Our fabrication process focuses on optimizing transmittance
 - Visual inspection, geometrical dimensions and optical characterization and response to cosmics and radioactive sources allows for rapid feedback and optimization of glass production
- Significant improvements made in 40 cm Sci-Glass performance over the last year now reaching ~45% (longitudinal) and ~80% (transverse) at 500 nm wavelengths well matched to the photon detection of typical SiPMs.
- Further improvements in transmittance anticipated after new glass production method is implemented

SciGlass Radiation Hardness

□ SciGlass blocks meet the radiation hardness requirements of the EIC

SciGlass has been shown to be radiation hard up to 1000 Gy (highest dose tested to date) EM radiation

 \odot Also radiation resistant up to $10^{15}\,n/cm^2$ hadronic irradiation

□ Shown here are studies with 20 cm blocks exposed to 30 Gy at a rate of 1 Gy/min

□ Further tests will be conducted with 40 cm long samples

Prototype Beam Tests – 3x3 Array with 20 cm Blocks

- Prototype 3x3 array installed and tested energy resolution measured for three different beam energies
- **Results for ~7 X**₀ blocks matches with Geant4
- Test with ~15X₀ (40 cm) long blocks to address the longitudinal shower leakage

Prototype Beam Tests – 3x3 Array with 40 cm Blocks

Prototype construction

SCINTILEX

- □ 3x3 array prototype with SiPM readout, envisioned for EIC and other NP experiments
- Custom matrix of 50 micron pixel pitch, devices -> compact readout size: longitudinal dimensions ~2 cm without cables and services

Prototype in Hall D at JLab

Results from data analysis

The longitudinal shower is now largely contained in the 40 cm block – in comparison with our earlier tests with 20 cm long blocks – but there is a significant transverse shower leakage that increases the energy resolution \rightarrow need larger array of 40 cm long blocks

Prototype Beam Tests – 5x5 Array with 40 cm Blocks

Initial test with a 5x5 prototype

Beam test impacted by COVID19

- 25 glass blocks of dimensions 2x2x40 cm³ and Hamamatsu SiPMs (S13360-6075) two per block
- Sensors were powered with custom biasing circuitry based on JLab detectors. The SiPM signal was processed with a custom trans-impedance amplifier.
- □ Signals were acquired using two branches: streaming (SRO) and triggered DAQ (standard method), both using fADCs

Preliminary Results

- Demonstrated SiPMs and SRO (envisioned for EIC) for SciGlass both streaming and triggered DAQ provide similar results
- The EM shower was reconstructed correctly, but a rate-dependent gain variation – traced back to the biasing circuitry - plus a toonarrow pre-set signal integration window on the fADCs increased the energy resolution

Next: complete the beam test program with larger, e.g. 5x5 detector prototype. Also further optimize block size relative to Moliere radius.

SciGlass at EIC

CINTILEX

Scattered electron kinematics measurement is essential at the EIC

- High precision, hermetic detection of the scattered electron is required over a broad range in η and over energy range from 0.3 to tens of GeV
 - In the very backward direction high precision is required for electron kinematics measurement
 - In backward and barrel region it is required for clean electron identification. In the barrel region, driven by high-x and high-Q² science drivers
- Here, SciGlass is presented for the barrel EMCal as this provides excellent e/h separation due to its good energy resolution, matched to the backward region needs

η	Backward	Barrel
Material	PbWO ₄	SciGlass
X _o (mm)	8.9	24-28
R _M (mm)	19.6	35
Cell (mm)	20	40
X/X ₀	22.5	17.5
<u>∆z (</u> mm)	60	56

Requirements (EIC Yellow Report)
 □ Good energy resolution

 e.g., region -2 < η < -1
 requires ~7%/√E

 □ e/h separation up to 10⁻⁴

A SciGlass Barrel EMCal in the EIC Detector

SCINTILEX

SciGlass Barrel ECAL in EIC detector model

Homogeneous, projective calorimeter based on SciGlass, cost-effective alternative to crystals

□ For an EIC the geometry requires 68 SciGlass blocks per slice with 6 family variations

- □ Slices combined into groups of 5 separated by 2.811° radially to produce a wedge
- □ 120 slices combined to create 24 wedges separated by 15° radially.

Central region of 50 cm considered due to non-fixed target.

□ Currently ~8,000 blocks to complete the barrel

Goal: produce and characterize different block geometries needed for a barrel EMCal

SciGlass Barrel EMCal Projected Performance

- \Box Assumes 45.5 cm long blocks (17X₀) close to 40 cm prototype
- □ Implemented with the active components and support structures

CINTILEX

Also important to consider materials in front of the EM calorimeter as it impacts performance (resolution, rejection, etc.)

Projected resolution exceeds EIC Yellow Report requirement

Use of AI methods improves pion rejection to nearly 100%

Outlook

- Demonstrated a novel scintillating glass (SciGlass) as an cost-effective alternative to scintillating crystals for precision electromagnetic calorimeters in nuclear physics experiments, e.g., at the EIC
- □ SciGlass 40 cm long blocks have been produced routinely in lab size batches (10-25 blocks)
- Performance validation carried out with prototype 3x3 SciGlass arrays (20 cm and 40 cm blocks) and suitable readout for NP experiments – energy resolution matches GEANT4 projections

Plans for Phase 2A:

- Produce sufficient SciGlass bars to complete testing with a larger, e.g., 5x5 detector prototype supported by our characterization results, simulations, and community feedback, most recently from the EIC Detector Advisory Committee
- □ Further optimize the block size relative to the Moliere radius and complete the objective of demonstrating the ability to produce bars of various shapes

