

Design and Fabrication of the HDSoC- High Density Digitizer System-on-Chip

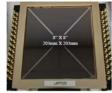
A High channel-density Waveform Digitizer for direct interfacing of optical sensors Application Specific Integrated Circuit (ASIC).

Aug 16, 2023 Luca Macchiarulo, Ph.D. Senior Engineer at Nalu Scientific LLC

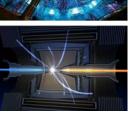
Work funded by DE-SC0020457

NCE: 12/31/23

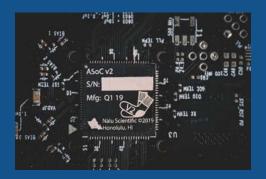
Core Technology: Data Acquisition Microchips


AODS v1 BV2

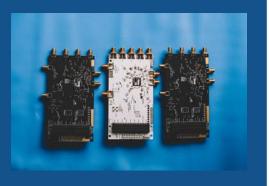
Mfa: Q1 20



1. Front-end Chips:


- Event based digitizer+DSP
- 4-32 channel scope on chip
- 1-15 Gsa/s, 12 bit res.
- Low SWaP-C
- User friendly: FW/SW tools


2. Integration:


- SiPM
- PMT
- LAPPD
- Detector arrays

3. Applications:

- NP/HEP experiments
- Astro particle physics
- Beam Diagnostics
- Plasma/fusion diagnostics
- Lidar
- PET imaging

ABOUT NALU SCIENTIFIC

Agile Small Business in Honolulu, Hawai'i

Located at the Manoa Innovation Center near U. of Hawaii

20 staff members: 7 PhDs, 5 MSc, 8 BSc

Access to advanced design tools

Rapid design, prototyping and testing

Vertically Integrated Team:

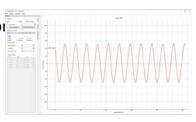
<u>Microelectronics</u> Analog + digital System-on-Chip (SoC)

<u>Hardware</u> Complex multi-layer PCBs <u>Firmware</u> FPGAs, CPUs, Embedded

<u>Software</u> Data science, GUI, documentation <u>Scientific</u> Plasma, medical, physicists, space

Exclusive Distributor Agreement for North America

Sales of ASICs, eval boards Enhanced OEM opportunities

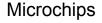

Nalu = 'wave' in native Hawaiian language

Current ASIC Projects

Project	Sampling (GHz)	BW (GHz)	Buffer (Samples)	Number of Channels	Timing Res. (ps)	Available Date
ASoC	3-5	0.8	16k	4	35	Rev 3 avail
HDSoC	1-2	0.6	2k	32	80-120	Rev 1 avail
AARDVARC	8-14	2.2	16k	8	10	Rev 4 avail
AODS	1-2	1	8k	1-4	100-200	Rev 2 avail
UDC	8-10	1.5	4k	16	10	Rev 1 avail

- DOE Phase I/II SBIRs
- Low SWaP-C specialty digitizers for
 - Radiation detection
 - Photonic sensors
 - Time of Flight (ToF)
 - Medical imaging
 - Space
 - Rad hard and harsh
- Evaluation PCBs available
- Extensive suite of software tools
- All microchips and tools available through CAEN Technologies USA

Software

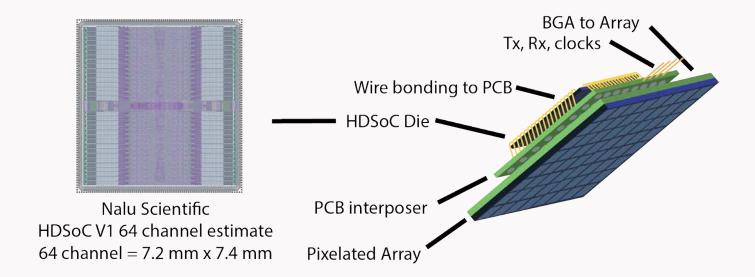


Eval PCB

HDSoC project - Summary

- Part I:
 - Topic Introduction The need
 - HDSoC concept
 - Rev. 1 design and Fabrication
- Part II:
 - Rev. 1 testing fixtures
 - Rev. 1 initial evaluation
 - Rev. 1 extensive testing
- Part III:
 - Rev. 2 Design
 - Rev. 2 Fabrication
 - Packaging and testing

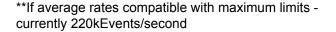
Part I: High Density Digitizer SoC - concept and Design



64-Channel HDSoC Block Diagram

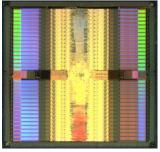
"HDSoC": High channel count ASIC with full waveform sampling and data reduction, targeting the increase of readout integration for very high-density detectors such as Silicon PhotoMultipliers (SiPM), MA-PMTs, and LAPPDs low-cost, low power, solution for experiments with very large channel counts. 16 Channels 16 Channels Trigger Time-Stamp Input Timing Gen Analog Sampling 64 ch Stage+ Preamps High Speed 16 Channels Readout 16 Channels Control Storage Serial Digitization DSP Pixel array bias + control Calibrati Ped 🕁 Rx in on Mem Sampling Sampling clock Tx out clock

64-Channel HDSoC concept

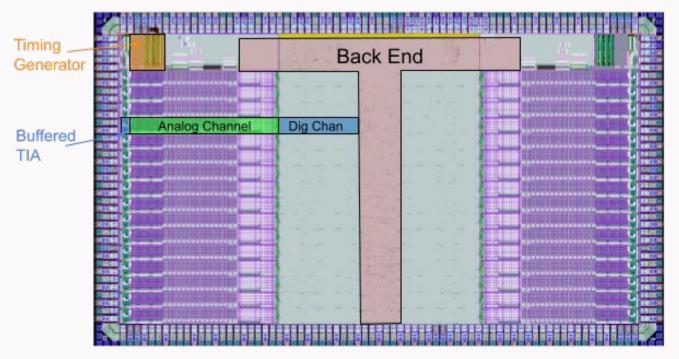

HDSoC DESIGN CONCEPT DETAILS

High density waveform digitizer

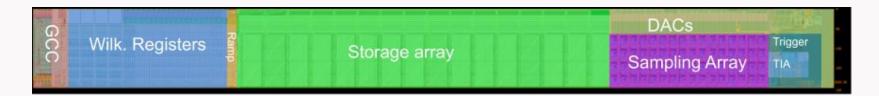
- High Density: 64 channels (V1:32, V2:64)
- Full waveform sampler and digitizer
- Highly integrated, SiPM gain + bias
- Commercially available, low cost CMOS

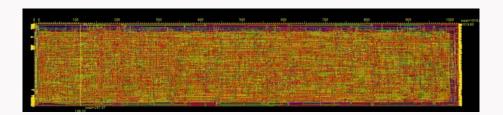

Parameter	Target Spec		
Sampling Rate	1-2 GSps		
ABW	> 600MHz		
Depth	2k Sa		
Trigger Buffer	~2 us (@1Gsps)		
Deadtime	0**		
Channels	32/64		
Supply/Range	2.5		
ADC bits	12		
Timing accuracy	80-120ps		
Technology	250 nm CMOS		
Power	20-45mW/ch		

- On chip TIA
- Serial interface (up to 500 Gsps)
- Discriminator for self-triggering and zero suppression - exported in dedicated serial stream
- Virtually dead-timeless (buffer virtualization)
- Feature Extraction
- 32 ch and 64 ch proto chips fabricated
- Phase II SBIR almost complete


HDSoC v1 die shot

HDSoC v2 die shot




HDSoC Rev. 1 Layout - 32 ch proto

HDSoC Rev. 1 Channel Layout (Mixed signal and digital control)

HDSoC Rev. 1 Package

Packaged in QFP144 (22 mm side)

All I/Os connected:

- Serial IF
- Parallel IF

After validation, a smaller package (LQFP128 - 16mm side) with only serial interface can be used. 144 pins are sufficient for the 64 channel device.

A custom package could be used to reduce the footprint.

22mm

Part II: High Density Digitizer SoC Revision 1 Testing

HDSoC v1 specs

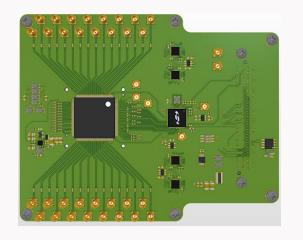
Specifications					
Sampling Rate	1-2 GSPS				
ABW	0.6GHz ◆				
Depth/channel	2048 Samples				
Trigger Buffer	~2 us				
Max rate	14kHz/all channels 220 kHz/hits				
Channels	32				
Supply/Range	2.5V/0.5-2.0V				
ADC bits (stated res.)	12				
Timing accuracy	<90ps				
Technology	250 nm CMOS				
Serial Interface	500MHz 4				
Power	47mW/ch				

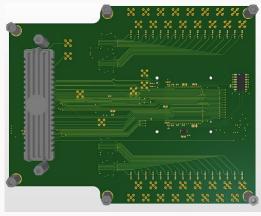
and Measurements

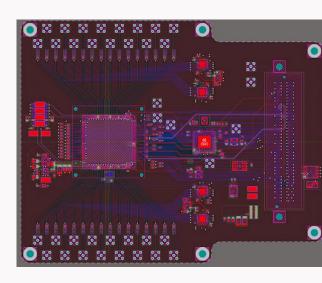
Confirmed at 1-1.5 GSPS

Measured

Maximal including header and 8b10b encoding overheads - assumes full readout of 1 window (32 samples) and operation at maximum speed for serial interface (500 Mb/s) and system clock (125 MHz) - current tested limit 13.2kHz @312.5MHz serial interface and 31.25MHz system clock.

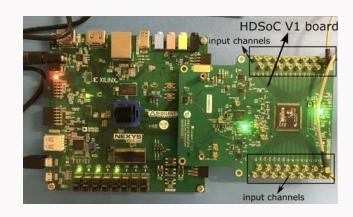

Linear range with ~5 ADC count sigma = 0.8-2.0V


Measured with pulses - currently testing with SiPM Measured to 312.5MHz


Some sources of extra power identified - reduced in V2 Includes: sensor bias, amplifier, trigger, data transfer.

NALU SCIENTIFIC ENBLING INNOVATION

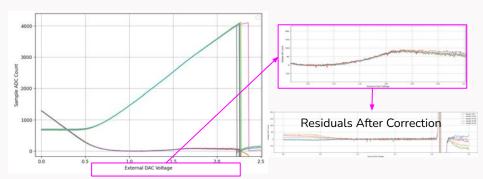
Test boards Design

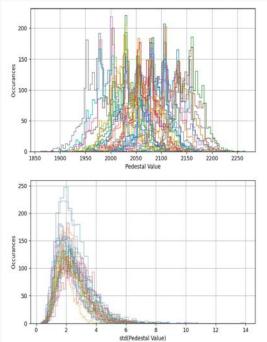


- All 32 channels accessible via MMCX connectors
 - Individual channel biasing
- On board clock generation
- Interface to readout board via standard FMC connector
 - o Permits testing of all modes, including serial interface

Test boards setup

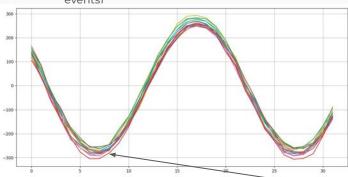
Evaluation Board - now available to interested customers through CAEN - connects to inexpensive readout board with Ethernet connectivity

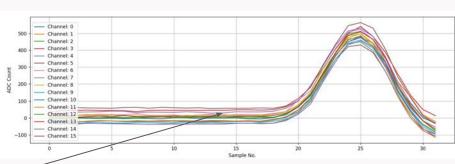



Test Rig at Nalu - full remote access to boards, including signal sources - a lifesaver during COVID days....

HDSoCv1 Static accuracy

- "Pedestal" evaluation:
 - Due to internal offsets the individual sample values need to be calibrated
 - Statistics on the individual readout for the calibration can be used to estimate the "static error" at bias level
 -> ~2 ADC count standard deviation
- Varying the input bias to the chip allows studying the overall non-linearity of the conversion - pattern can be calibrated in a large range (1.2V) with residual of ~5 ADC counts (3 ADC counts for a central range of ~200mV)


Waveform collection


- Waveform collection, initial calibration
 - Single channel acquisition
 - Sine wave input case
 - o Proper timing ("stitching") across windows
 - o First order amplitude calibration

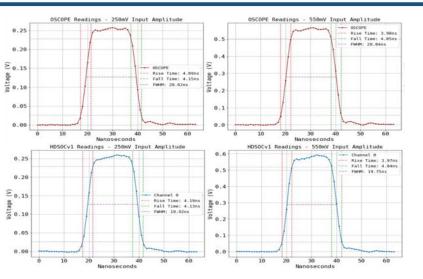
0

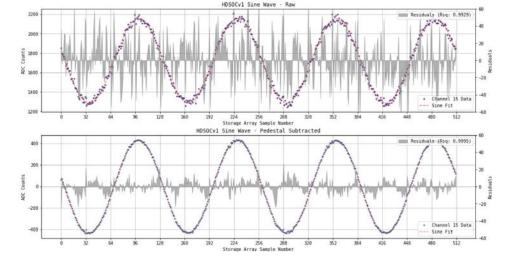
Multi-channel: synchronized data taking

Same signal split into multiple channels (sine and "pulse-like"

Waveform: Sine

Amplitude: 200mVpp*


Freq: 50MHz


Signal drift resolved - issue with board biasing network

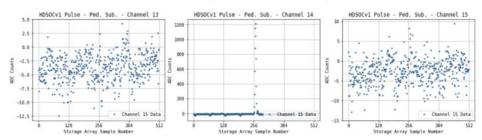
-100

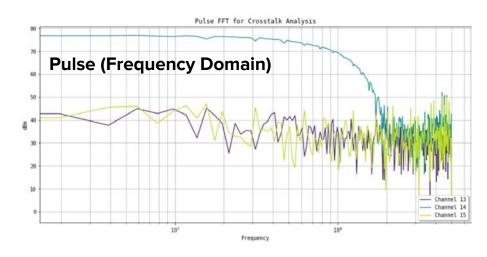
Square Pulse and Sine wave Response

Comparison of square waves captured on an oscilloscope and on a HDSoC channel, with general shape and key parameters (rise time/width/delays) well preserved

Voltage calibration (Pedestal subtracted) corrects major errors, as shown by wave fitting, though residuals are still present.

Crosstalk: Pulse and Sine Wave Inputs

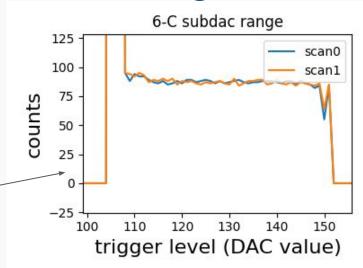



No signs of significantly visible crosstalk on neighbor channels

Sine Wave 750 Channel 1 Channel 2 10 9 9 0 20 10 9 10

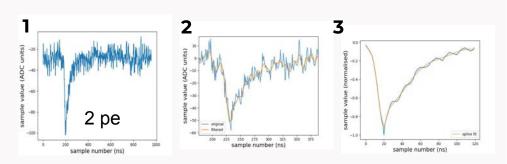
Note: signal and noise on difference scales

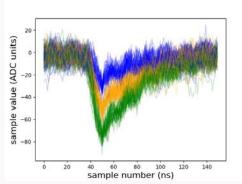
Pulse (Time Domain)

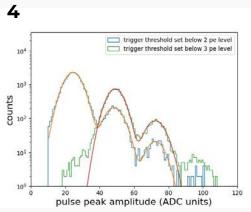


Digital Partition Features testing

- Different acquisition modes (ROI, self-triggering)
 - Self triggering
 - Rol (zero suppression based on internal thresholds)
- Max sampling rate -> data to 1.5
- Verification of output trigger streaming
- Internal Scalers to perform threshold scans
- Serial interface (functionality and speed)
- Max event rate: 14kEvents/s for all channel readout, 220kEv/s for single channel


SiPM readout experiments

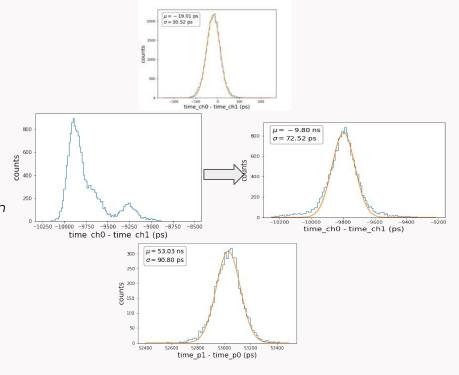

HDSoC V1 connected to a SiPM array. Onsemi J-Series 4x4 array of 3 x 3 mm2 SiPMs. HDSoC V1 channel 0 was set to trigger on signals corresponding to two PEs and above


- 1. SiPM pulses acquired via HDSoC self-triggering capability
- 2. SiPM pulse template (via averaging) calculated.

A spline fit was used to smooth the averaged pulse.

- 3. Template fit to estimate the amplitude of the pulse peak.
- 4. Pulse peak histogram shows maxima for 2 PE, 3 PE depending on the trigger threshold (2, 3 and 4 PEs resolved at 24.4 ± 4.7, 48.2 ± 4.9 and 72.3 ± 4.7 ADC units)

Timing Measurements and calibration

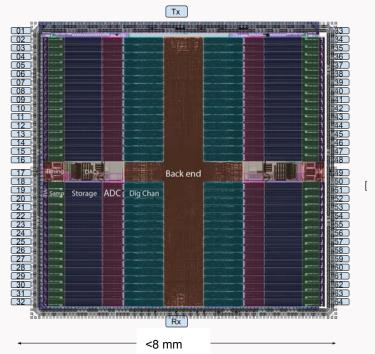

Estimating timing accuracy:

Identical Split pulse to two channels: ~30ps - (100 MHz 450 mV unipolar sine burst)

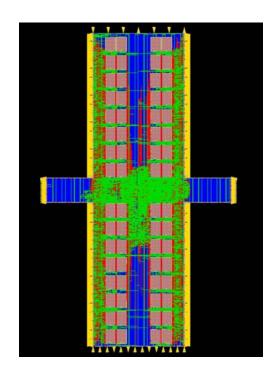
 Intra-channel accuracy: signal delayed ~10ns: with timing calibration ~ 72ps

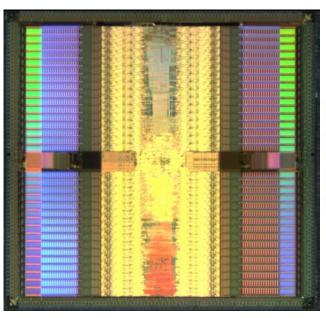
Note: <u>Timing calibration</u> performed using bin-occupancy fraction method on channels 0 and 1

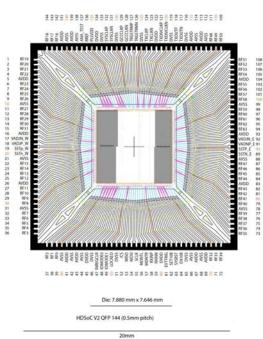
Inter-channel accuracy with "far" signals and timing calibration ~90ps


Part III: High Density Digitizer SoC Revision 2 Design and Fabrication

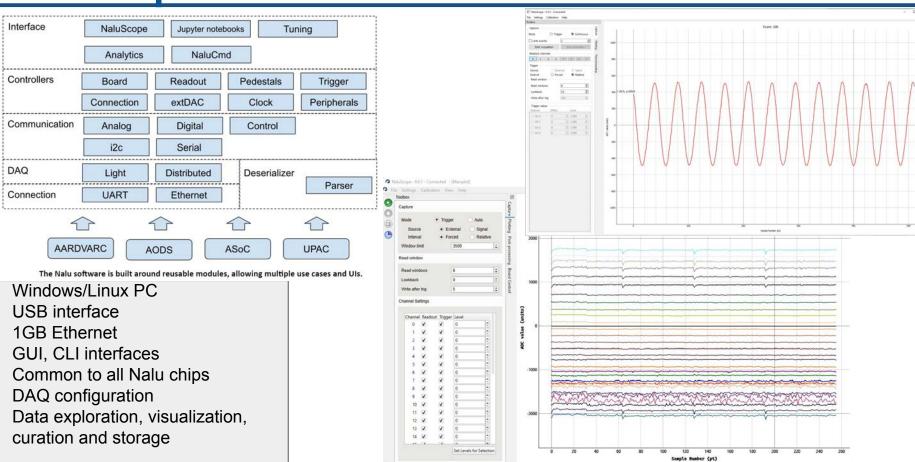
HDSoCv2 design


- HDSoC v2
 - Main improvements:
 - 64 channel device
 - Proper timing up to 2 GSPS
 - Reduced power consumption/chan
 - DAC uniformity
 - Clock gating
 - Triggering and Scalers reduction
 - Improved TIA
 - Correct low BW issue (input stage)
 - Complete redesign to target better integration with SiPMs, controllable internal and SiPM biasing
 - o Improved signal quality:
 - Analog/digital isolation
 - Biasing control (current- based)
 - Comparator biasing
 - Power domain separation


HDSoCv2 - digital Improvements


- PLL for internal generation of clocks:
 - Only one reference clock required for sampling, conversion, readout
- Simplified SPI-like interface for configuration:
 - Rev. 1 fast LVDS proprietary interface (still available)
 - Rev. 2 slower single-ended and simpler interface with chaining to reduce system constraints
- Design of internal calibrations SRAM and Feature extraction mechanism to reduce rates - not included in production due to scheduling constraints, but available for next revision.
- Some minor corrections:
 - Added Header information for ROI mode.
 - O The internal scalers changes to avoid double counting
 - O Added programmable masking for channel
 - External triggering changed from level trigger to edge trigger to simplify the system level requirements.
 - O Command to trigger and request a single event

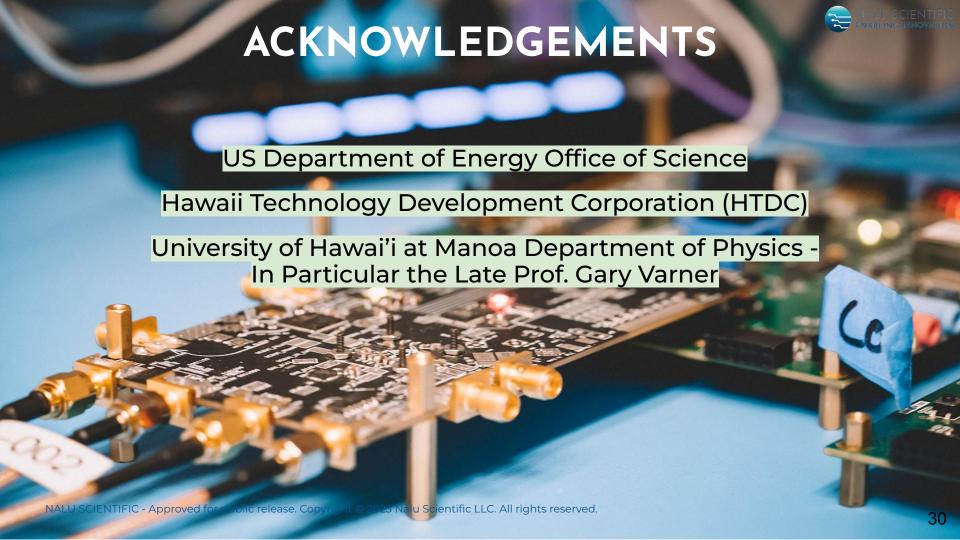
HDSoCv2 Layout - Fabricated die



NaluScope Common Software and GUI

Conclusions and future work

• HDSoC v1


- All channels functional
- o Proper multi-window, multi-channel acquisition, self triggering, output streaming
- Some issues with noise and power/TIA BW
- Test boards available through our U.S. distributor, CAEN together with FW/SW/GUI and support.

• HDSoC v2

- Fabricated currently gearing up for testing
- HDSoC v1/2 may be used in beam tests for various EIC sub detectors
- o Opportunity to implement EIC specific (sensor, backend) needs in future revisions or branches

HDSoC is a novel streaming readout capable, waveform- sampling ASIC:

- Low Cost, low power, scalable
- Works with a variety of sensors arrays: GEMS, TPCs, SiPMs, MA/PMTs, MCP PMTs
- Tracking and PID
- Portable radiation imaging systems
- o Compact, high-efficiency neutron scatter cameras for non-proliferation national security missions.
- Various conference presentations and live demos

