

US DOE-Topic # 29D: Low-cost, conformal, and efficient thermoelectric modules for ondetector electronics cooling

Office of Science

2023 SBIR STTR Exchange Meeting

Date: Aug 15 – 17, 2023

Contract#: DE-SC0019552

Program Manager: Michelle Shinn, Ph.D. (Email: Michelle.Shinn@science.doe.gov)

Nanohmics Inc.: PI: Giri Joshi (email: gjoshi@nanohmics.com) Steve Savoy, Rey Guzman, Andrew Foley, Roger Wood

University of Virginia: Mona Zebarjadi , Department of Electrical and Computer and Materials Science and Engineering

> University of Kansas: Michael Murray, Department of Physics and Astronomy

> > Capstan Technology: Robert Pearsall

Acknowledgement

• Program Managers:

Michelle Shinn, PhD, DoE

Manouchehr Farkhondeh, PhD, DoE

• Collaborators/Consultants

Mona Zebarjadi, PhD, University of Virginia Michael Murray, PhD, University of Kansas Drew Weisenberger, PhD, JLab Robert Pearsall, Capstan Technologies

Overview

- Introduction to Nanohmics
- Technology background
- High-level vision for large-area, conformal TECs
- Program objectives
- Conformal TEC applications
- **D** Summary

CONVERSION Materials Electro-optics Energy conversion SENSING Technologies Biomolecular Transducer materials MEASUREMENT Instrumentation Computational Imaging

APPLIED SCIENCE

-Sensor/transducer materials -Electromagnetic · Wavefront -Molecular/Inks · Material interfaces -Energy conversion · Heat/Emission -Computational science/Al

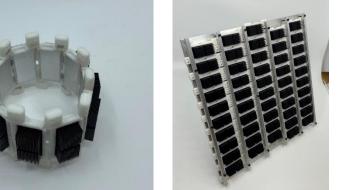
INNOVATIVE ENGINEERING SYSTEM SOLUTIONS

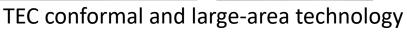
- -Microfabrication · Electronics -Vacuum deposition · Coatings
- -Embedded systems · Layout
- -Sensors \cdot Component integration
- -Mechanical \cdot Industrial design

Thermal control · Electrodynamics
-Electro-optics · Electrical engineering
-Mechanical design · Control Systems
-Prototype · Low volume production
-Real-time computational imaging

Founded: Austin, TX 2002 Staff: 46 technical

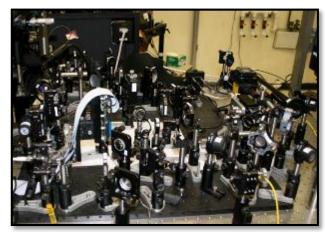
Facility: 13,500 sq.ft. industrial lab/flex R&D: Industrial Sensors, Smart instrumentation


Nanohmics Company Capabilities


- Thermoelectric Devices
 - Cooling: current drives heat
 - Power Generation: temperature gradient generates current
- Capabilities
 - Materials fabrication and characterization
 - Device design and simulation
 - Thermoelectric device and systems fabrication and characterization
 - Cooling and power generation applications
- Products under development
 - Large-area and conformal TE cooling device (DoE)
 - Thermoelectrically-cooled Jacket (NAVY)
 - TEC Knee Therapy Wrap (IRAD)

Cooling Jacket application (NAVY)





Nanohmics Company Capabilities

Instrumentation Development

- Capabilities
 - Optical spectroscopy
 - Low-noise electronics
 - Digital signal/image processing
 - Real-time computational imaging
 - Precision measurements
 - Rapid full-custom prototyping
- Advanced products
 - Zowave[™] passive wavefront correction (Several in field, LRIP w/ a prime)
 - ECISTM water toxicity sensor (100+ units delivered and in use, active IDIQ)
 - GlideLine[™] parachute navigation system (sold entire product division)

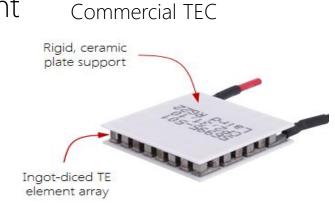
Program Overview

- Program: DoE-SBIR Phase-II program, 30 months (NCE)
- Participants: Nanohmics (lead), University of Virginia
- Consultant: Capstan Technology, Jefferson Lab
- Program goals:

Design and fabricate efficient, low-cost and conformal TEC systems for on-detector electronics cooling

- Enhance COP of TEC
- Fabricate 6" x 18" conformal TEC
- Construct cooling system for on-detector electronics

Technical Objective 1: Design and fabrication of high-ZT thermoelectric modules - Completed


Technical Objective 2: Performance demonstration of fully-operational modular assemblies (TE alpha prototype) - Completed

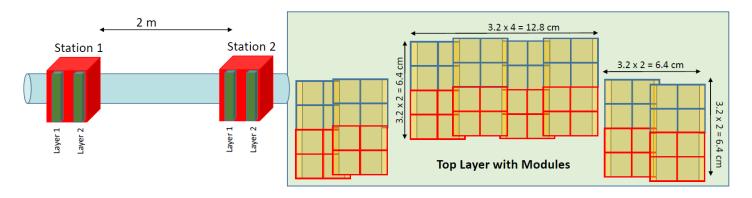
Technical Objective 3: Design of a modular TE system for on-detector electronics cooling - Completed

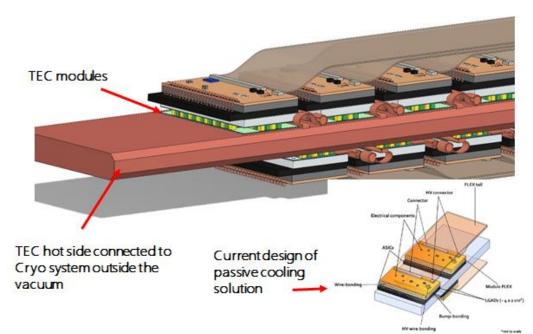


Technology Innovation: Modular Thermoelectric System - Thermolynx

- -Modularity provides large-area, high-efficiency thermal management solutions as required for on-detector electronics cooling $-\Delta T = 71^{\circ}C$ measured at $T_{ambient} = 25^{\circ}C$, higher compared to Commercial TE
- CoP >2 with cooling power > 0.75 W/cm² ($T_{ambient} = 25^{\circ}C$, $\Delta T=10^{\circ}C$)- Milestone achieved

- Conformable and compliant for high thermal interface contact
 Adaptable sizing and flexibility meets new application requirements
 Designed for rapid prototyping w/ integrated heat exchangers
 Low-profile is configured for wearable/textile comfort
- -Low-cost manufacturing process (\$199/sq.ft.)




Thermolynx system

Application Overview/Design

Roman Pots modules designed by university of Kansas team (Dr. Michael Murray)

OHMICS

- In collaboration with Dr. Murray, Nanohmics' designed a low-profile, Conformal-Backside cooling system for Large-Area, Detector Electronics (C-BLADE) cooling system into Roman Pots of the EIC
- Looking for funding for fabrication and testing

Technology Innovation:

Nanohmics designed and fabricated conformal TEC devices to cool ondetector electronics and maintain a temperature below 20 °C during Phase II

ThermoLynx-Powered Commercial Applications

ENTRY PRODUCTS

- -Wearable PPE (welding, first responders, soldiers, clean room)
- -Wearable medical (ambulatory cold therapy, cast-integration)
- -Cold chain/fixture thermal management
- -Enclosure air conditioning (wall/appliance-mounted)
- -Portable and battery-powered food & beverage
- –Scientific and biotech thermal cycling/precision thermal control
 –Consumer comfort cooling

PPE ENVIRONMENT COOLING

EV BATTERY MANAGEMENT

5G ERA COMM COOLING

MODULAR TE PROVIDES LARGE-AREA, HIGH THERMAL INTERFACE CONTACT, PROGRAMMABLE COLD MANAGEMENT

Low-profile heat rejection fan

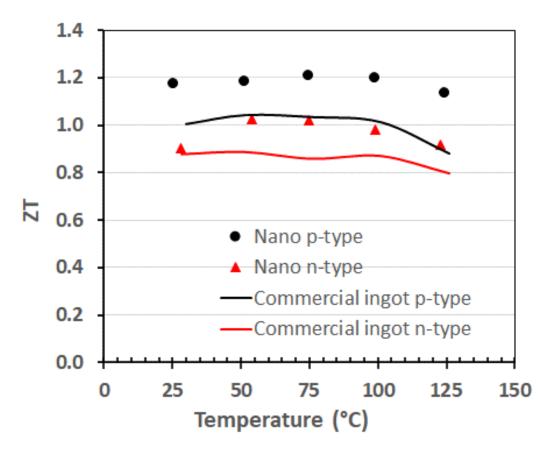
THERAPEUTIC/MEDICAL WEARABLES

Phase II program work plan

Program Objective: Developed lowcost, efficient and conformal TEC fabrication with CoP>1.5 for Δ T~10°C cooling of on-detector electronics

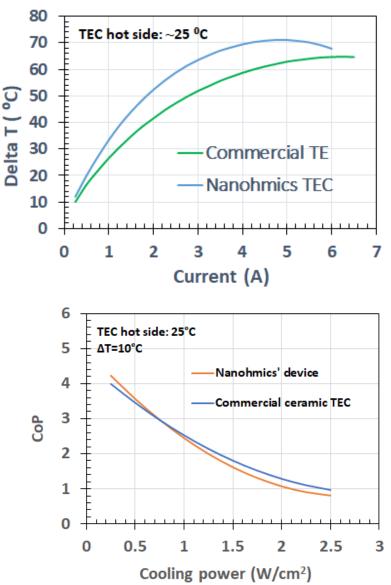
Impact: Enable detector to maintain a temperature below 20 – 25 °C

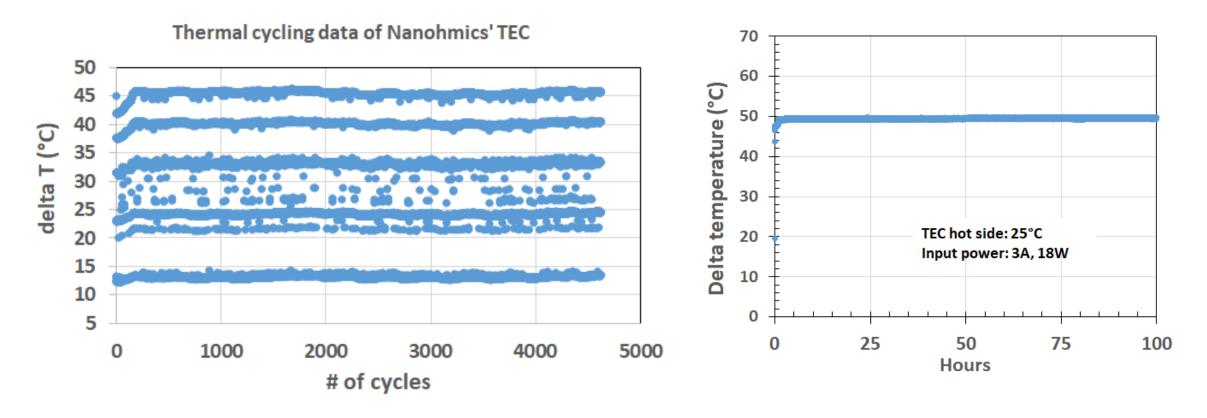
Phase II goal: Demonstrated cooling performance of a 12" x 12" conformal TEC prototype device and cooling system suitable for large-area detector's electronics cooling


Team capabilities: Extensive TEC design, fabrication, and commercialization experience. Flexible/stretchable medical sensor technology development experience.

ECHNICAL OBJECTIVE Vork Plan Tasks	Milestone	SBIR P 2		AM PEI LO 12		20_	22_	24	26 2	28
Program kick-off with sponsor										
Establish, analyze, and document system requiremnts	Kick-off meeting; specification slides									
Optimization of high-ZT thermoelectric materials										
Synthesize TE materilas	Fix TE compositions of p- and n-type									
Optimize TE composition and process	with ZT around 1.0									
TE consolidation across fiberglass and electrode development										
Consolidate TE materials across fiberglass	6" wide metallized TE element array									
Develop contact materials	across fiberglass with ZT around 1.0									
Characterize and optimize metallization layer	and contact resistance < 10 μ Ω-cm ²									
Concept demonstration unit developments and optimization								_		
Optimize dielectric and thermal spreader materials	Fabrication of 6" wide row module		1							
Design and assemble TEC unit	with cooling performance									
Characterize the CDU unit	demonstration									
Heat exchanger design and component fabrication										
Design and simulate hot side heat exchangers	Fabrication of optimized heat									
Fabricate mechanical components	exchanger for TEC hot side									
Fabrication of alpha-prototype conformal TEC System										
Design and fabricate alpha-prototype TEC										
Optimize materials and components	Fabrication of 6" x 18" conformal TEC									
Design and fabricate electrical components	system									
Alpha unit performance demonstartion										
Characterize alpha-prototype TEC	Full third party validated alpha-							- 1		
Validate performance by third party	prototype cooling performance									
Beta design of on-detector electronics TEC cooling system										
Design on-detector electronics TEC cooling system	Fabrication of on-detector electronics									
Optimize materilas and components	TEC cooling system									
Volume manufacturing process design										
Design TEC volume manufacturing components	Detail low-cost roll process TEC									
Optimize TEC roll manufacturing for low-cost production	manufacturing plan									

High-performance thermoelectric materials


- High performed TE materials synthesis
- Base compositions: Bi_{0.5}Sb_{1.5}Te₃ (p-type), Bi₂Te_{2.7}Se_{0.3} (n-type)
- Room temperature figure of merit (ZT): 1.2 (p-type), 0.9 (n-type)
- Better TE materials compared to commercial TE
- CoP proportional to ZT
- Targeted CoP ~ 2.0 with $\Delta T = 10 \ ^\circ C$


Cooling performance of *Thermolynx* modules

- 20mm x 41mm TEC
- CoP and cooling performance measured at $\Delta T = 10^{\circ}C$ and $T_{hot} = 25^{\circ}C$
- $\Delta T = 71^{\circ}C$ measured at $T_{ambient} = 25^{\circ}C$, higher compared to Commercial TE
- CoP >2 with cooling power > 0.75 W/cm^2
- Competitive performance as high quality commercial TEC
- Targeted cooling performance for room temp cooling applications such as on-detector electronics cooling

Thermal stability data

• Thermolynx modules show robust mechanical and thermal stability for 5000 cycles and 100 hours of continuous operation

SHORT-TERM COMMERCIAL PLANS

- 5000 Thermolynx modules delivered Q4 2023
- Freeze core, power and tail module industrial design, hard-tooling initiated Q3 2023
- Wearables cooling product (jacket/cover-all) designed and fabricated Q4 2023
- Finalize industrial design with transition partners, fabrication completed Q4 2023
- Jacket comfort/ergonomics human subjects IRB study complete Q1 2024
- Full assembly sampling articles Q4 2023
- Connector progressive die tooling investment Q4 2023
- Launch welder's jacket/other PPE products Q1 2024
- Human subjects IRB study for post-surgical knee therapy device Q3 2023
- Establish therapeutic product partnership by Q2 2024, 510k filing (class II predicate device) regulatory approval path for 5S Li+, 20V
- Scale for consumer/enclosure/industrial markets Q2 2024

-500 WORKING SAMPLES FABRICATED AND TESTED

-FUNDING COMMITTED TO HARD TOOLING THE CORE THERMOLYNX MODULE, SHROUD AND TERMINAL UNITS FOR 8-MODULE WEARABLE ASSEMBLIES

Summary

- Nanohmics has developed low-cost, conformal, and efficient thermoelectric cooling modules (Thermolynx devices)
- Thermolynx devices are based on PCB substrates, and assembled using automatic and tape & reel-based manufacturing processes
- The Thermolynx devices are modular in structure, and amenable to a large-area cooling system using stretchable and mechanically-complaint electrical connectors
- A CoP ~ 2.0 and cooling power > 0.75 W/cm² measured for room temperature cooling applications (T_{hot} ~ 25 °C, ΔT = 10 °C) such as on-detector electronics cooling
- Thermolynx are robust, thermally-stable, and easily integrable into cooling systems
- Collaborated with University of Kansas to design Roman Pot cooling system
- Nanohmics' devices are ready to build the detector cooling system as well as any other cooling applications, any collaboration is welcome!

Thank You!.....Questions??

