

Phase-IIB

High Performance Scintillator and Beam Monitoring System (SBM)

DOE-NP SBIR/STTR Exchange Mtg – Aug 16, 2023

Peter Friedman (PI & PD)* – Integrated Sensors, LLC, Palm Beach Gardens, FL Daniel Levin (PI), Nick Ristow, Claudio Ferretti – University of Michigan Physics Thomas Ginter – Facility for Rare Isotope Beams (FRIB), Michigan State University

*P. S. Friedman, CEO | Integrated Sensors, LLC | www.isensors.net

Phase-IIB: Transition Towards Commercialization

- Description of SBM Technical Innovation for NP
- Description of NP Implementation/Commercialization Strategy:

New **Translational Approach** in Phase-IIB to facilitate SBM design from a **standalone Six-Way-Cross** (6WC) commercial product, to a **low cost**, flexible component, customizable **<u>platform</u> integrated by the customer** into **existing** NP beam monitoring diagnostic systems. Major advantages are <u>faster</u>, more <u>precise</u> beamline tuning, <u>eliminating new beamline real</u> <u>estate requirement</u> need to switch to surrogate "pilot" beam for tuning.

• Application of NP Phase-II technology to NIH-NCI for FLASH Radiotherapy

Phase-IIB: Translational Approach for NP

- NP customer market analysis: *No <u>one-size-fits-all</u>* product solution, especially for different energy ions and different beam pipe size beamlines.
- Power of SBM product customization placed in hands of customer.
- No new *beamline real estate* required for our SBM platform "retrofit".
- Customer installation eliminates our travel, installation & overhead charges.
- Customer's in-house labor/expertise provides maximum flexibility at lowest possible cost, especially for *multiple* SBM identical platform solutions.

Phase-IIB Program Overview

<u>Goals</u>

- I. Provide advanced ion beam profile analysis with results continuously displayed in real-time
- II: Critical components/software *inserted by customer at low cost* into existing NP beam monitoring diagnostic systems

Features

- Novel-use thin scintillators: very high sensitivity, clean imaging, very low mass
- Scintillators are insertable/retractable without breaking vacuum using a stepper-motor translation arm
- Imaging detector: low noise, high resolution, high dynamic range camera
- Lens system: *ultra-fast* large aperture optics for max light collection (i.e., < F/1.0)

<u>Specs</u>

- ~ 10 μm position resolution
- Fast detection algorithms quickly find weak beams: < 1 sec for NP, and < 2 μs for proton-FLASH-RT (radiotherapy)
- Updating false-color display in beam coordinate system
- Analysis (location, RMS widths, amplitudes) updating continuously in real-time display at ~ 1 Hz
- Wide dynamic range in beam current/pps over ~ <u>10 orders-of-magnitude</u>, starting with <u>single ions</u> (at low energy)
- Higher energy beams are transmissive
- Linear to *at least 5* orders-of-magnitude in beam current

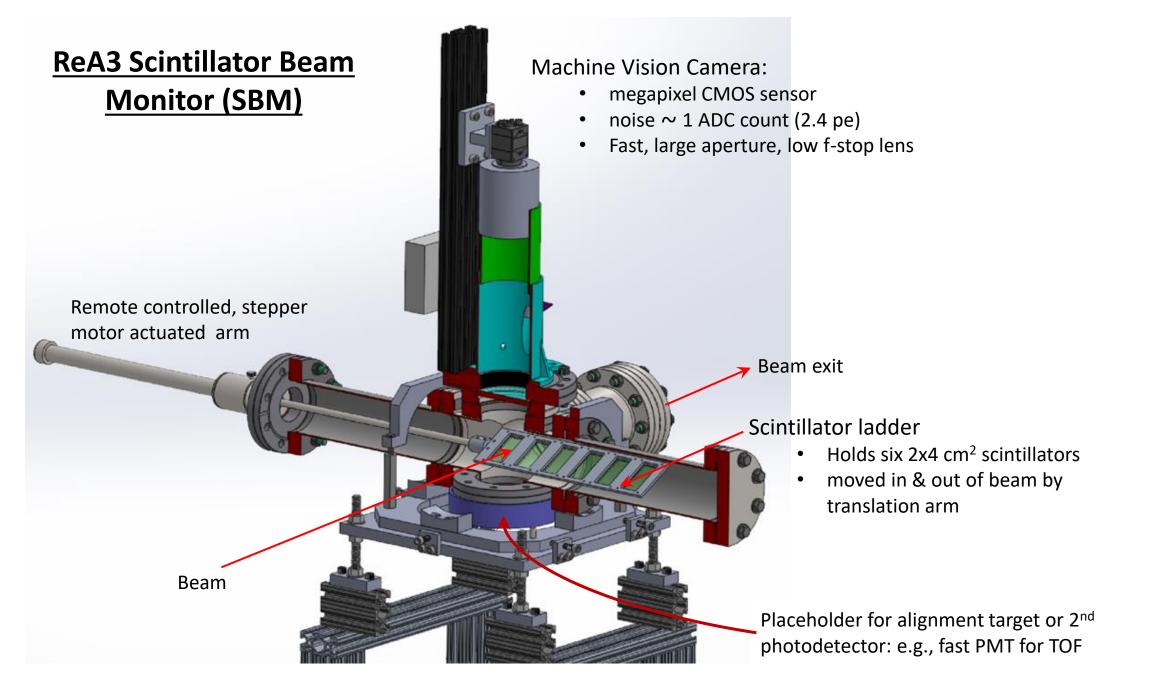
<u>Scintillators</u> – thin, non-hygroscopic & radiation damage resistant ¹

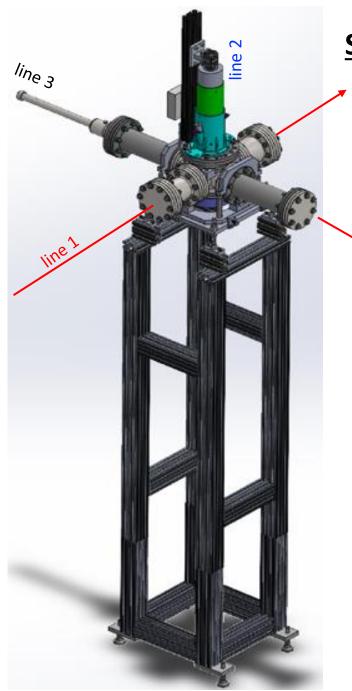
Type 1: Hybrid Material (HM) – Inorganic polycrystalline ceramic hybrid

• Thin < 700 µm water-equivalent thickness (WE)

Type 2: Polymer Material (PM) – Semicrystalline

• Ultrathin to Thin: tested 2 μ m WE to < 300 μ m WE

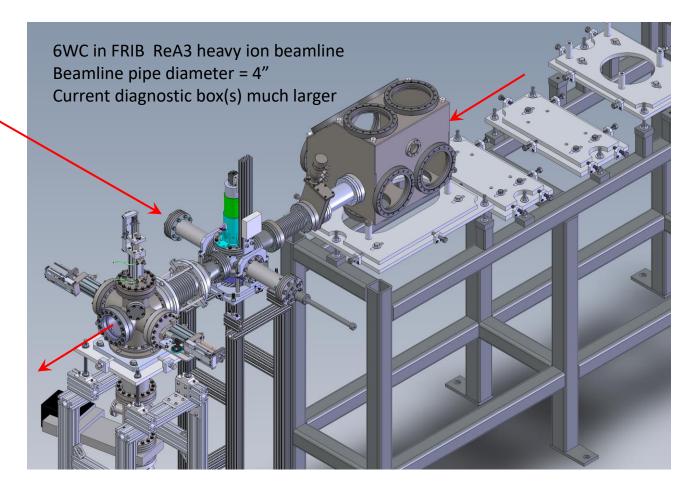

Both Types 1 & 2 have favorable properties:


- Radiation hard
- Sharp images essentially no internal reflections
- Non-hygroscopic
- Transmissive (depending on ion and beam energy)
- High light emittance for their respective type

¹Integrated Sensors, LLC has <u>4 issued patents</u> on these two new scintillator materials for beam monitoring applications.

Translational Approach from NP to the NIH-NCI

- Based on positive results from NP Phase-I (02/2019) and Phase-II (04/2020), we submitted to NIH-NCI a *"Direct-to-Phase-II"*, <u>3-year, \$1.9M</u> proposal which was awarded starting 09/2021.
- NCI Award: "Utrafast and Precise External Beam Monitor for FLASH and Other Advanced Radiation Modalities".
- Same Type 1 and Type 2 scintillators from NP used for NCI, but for larger area beam monitors up to <u>30 x 30 cm²</u>.
- Scintillator radiation damage measured as signal loss/kGy dose = 0.02%/kGy. For proton-FLASH-RT at 10 Gy/patient, 20 patients/day, 5 days/wk, or <u>1% signal loss/year.</u>
- Beam Monitor Analysis performed in < 2 μs, camera operates at 20,000 fps.

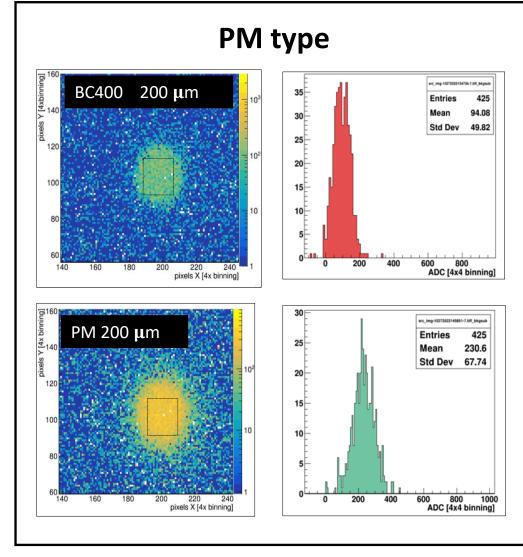


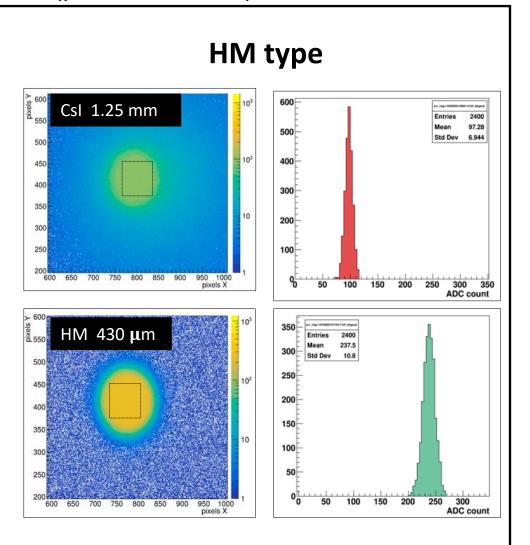
SBM Configured as "Six-Way-Cross" (6WC with 3 orthogonal lines)

Line 1: beam path (vacuum) fore/aft

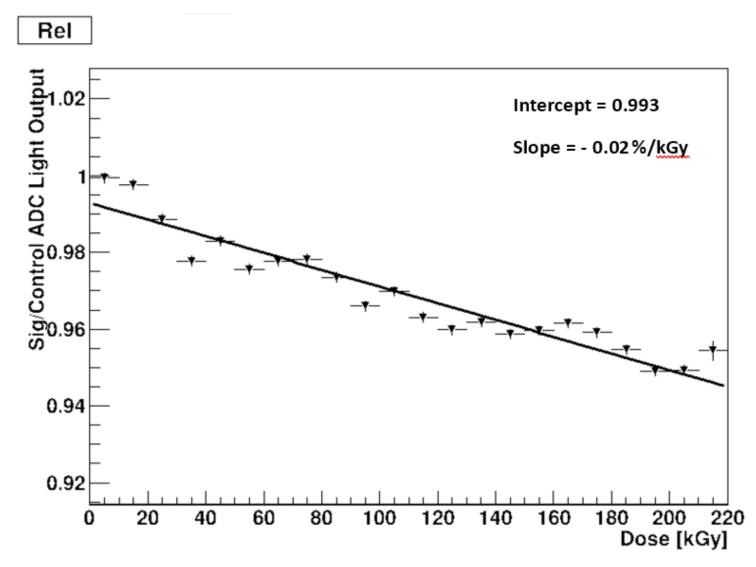
Line 2: optical: light paths to camera top + alignment targets bottom

Line 3: scintillator ladder travel




Test Beams

Location	Source	Energy [MeV/n]
UM Physics Lab	β (⁹⁰ Sr) & α (²⁴¹ Am)	~1
Michigan Ion Beam Laboratory (MIBL)	р	1 - 6
Facility for Rare Isotope Beams (FRIB)	⁸⁶ Kr ⁺²⁶	2.75
Notre Dame Radiation Laboratory (NDRL)	e⁻	8


Scintillator Efficiency Comparisons to Benchmarks

3 mm collimated electron beam (β - source ⁹⁰Sr)

Radiation Hardness of HM Scintillator

Low signal loss of **0.02%/kGy** measured over 212 kGy.

> 1 yr of continuous clinical use≤ 1 % signal loss

Signal loss is correctable with internal UV calibration system.

Facility for Rare Isotope Beams (FRIB ReAccelerated 3 MeV Beamline)

Project objective: provide DOE-NP facilities with advanced & fast beam monitoring.

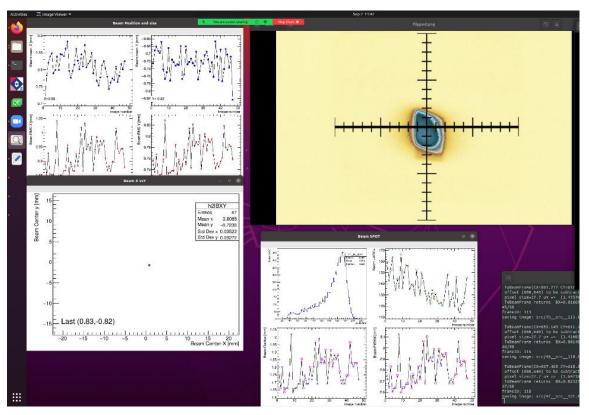
high premium for fast tuning

- Ion: ⁸⁶Kr⁺²⁶ at 2.75 MeV/n
- <u>Currents 520,000 pps to < 10 pps</u>
- Beam shaped by collimating plates, quadrupoles

Selected Results for Beam Finding, Profile Analysis & Real-Time Display

1. PM scintillators

- Beam profile and signal amplitude vs thickness, current
- Beam transmission (75% for 6 µm thick scintillator film)


2. HM type scintillator

- Single particle detection
- Response vs beam current
- Beam tracking & profiling

DAQ System Functionality (beta version)

- 1. Loads text file of configuration parameters:
 - pixel field range and spatial offsets
 - frame exposure time
 - acquisition mode (triggered or asynchronous)
 - pixel binning
 - ADC digitization and gain factor
- 2. Image processing in real-time:
 - background subtraction
 - faulty pixel removal
 - affine (perspective) matrix transformations and rotations for display in beam coordinate system
- 3. <u>Image analysis in real-time:</u>
 - beam finding
 - beam profiling (centroids, RMS widths)
 - peak amplitude
- 4. Display
 - color-coded beam image
 - real-time analysis results in updating graphics
 - updates at 1 Hz
- 5. Data transfer to storage media for offline analysis

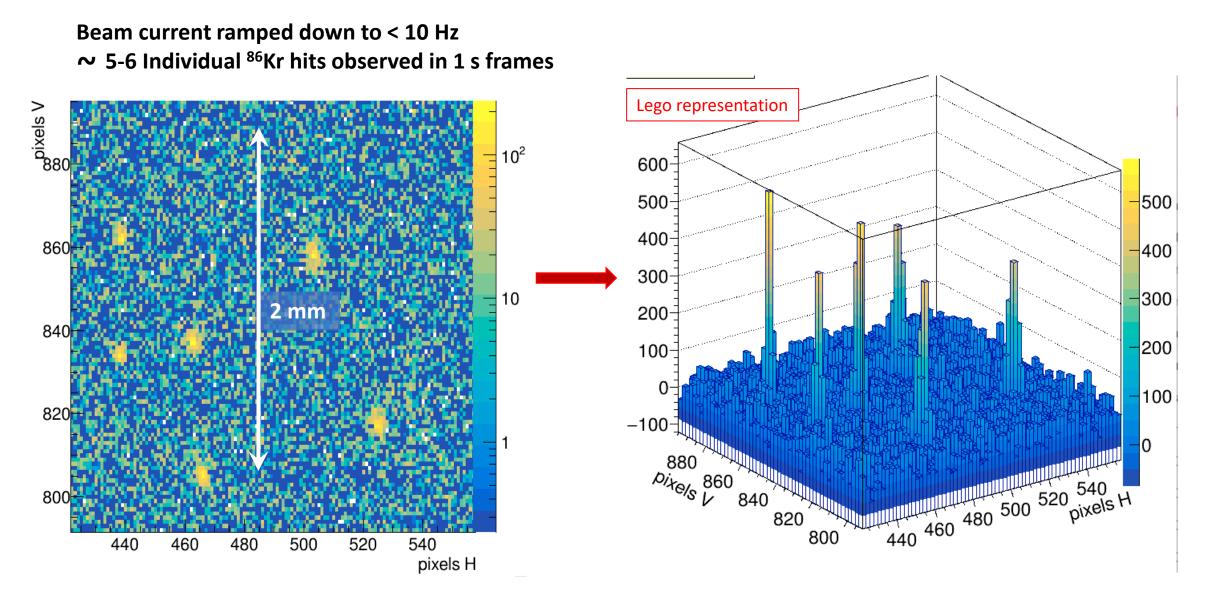
Screen capture of display in Control Room

Shown above:

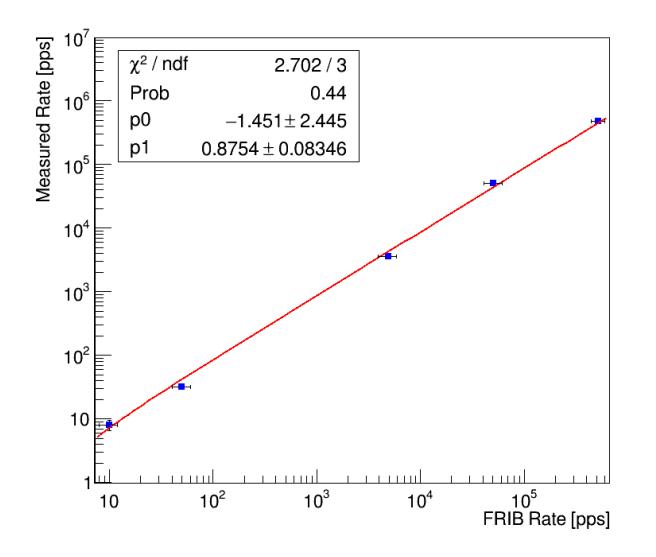
- beam false color
- 2D position history
- beam FWHM and radius
- 1D updating X,Y centroids
- peak ADC and RMS

Full pixel field

Beam finder


Beam radius history

X position history

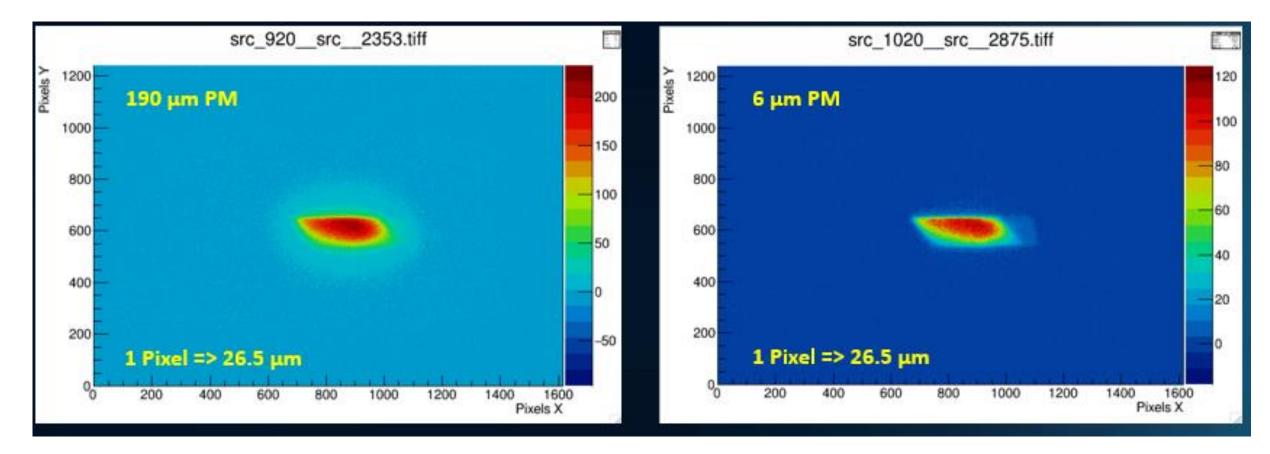

Y position history

X,Y history

<u>Signal & Beam Imaging in HM:</u> *"Single Particle" hits/images*

⁸⁶Kr⁺²⁶ Beam Current in HM Scintillator: Measured Rate vs. FRIB "Given" Rate

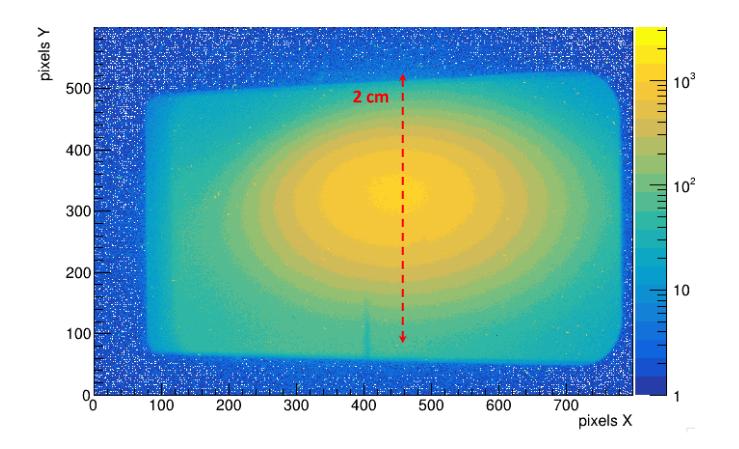
Result 1:


The <u>SBM can measure beam currents</u> that are now determined by 4 different FRIB devices:

- Faraday Cup
- MCP detector
- Silicon detector
- Calibrated Beam Attenuator

Result 2:

SBM measurement is *linear over more than* 5 ordersof-magnitude (the full range has not been determined)


Beamline Images of ⁸⁶Kr⁺²⁶

Above beamline images captured in real-time of same 2.75 MeV/u beam of 86 Kr⁺²⁶ particles irradiating two different thickness 2x2 cm **PM** scintillators at a rate of <u>5.2 x 10⁵ pps</u>. Image on Left was with **190 µm** thick **PM**; image on Right was with **6 µm** thick **PM** that transmits 75% of the beam. Z-bar intensity scale is different for the two images with max intensity of Left image twice that of Right image.

Beam Image on HM at NDRL (camera coordinates)

- <u>Single 2 ns duration pulse</u> (1.9 Gy) at a peak current of <u>1 A</u>
- Peak dose rate = **950 MGy/s**
- 8 MeV electrons

U.S. Potential Customers for Phase-IIB Translational Platform

- FRIB Potentially <u>3 dozen or more SBM</u> component systems (~ 20 in ReA)
- ANL-ATLAS Potentially a **minimum of 12-15 SBM** component systems
- Texas A&M Cyclotron Institute Potentially a <u>half-dozen SBM</u> systems
- Notre Dame Nuclear Science Laboratory Potentially a <u>half-dozen SBM</u> systems
- Florida State Accelerator Laboratory Potentially a minimum of 3 SBM systems

Commercial Applications

- **Ion Beam Monitoring** NP & EBRT (i.e., external beam radiation therapy)
- **FLASH-RT** (electrons, protons, ions, X-rays)
- Electron FLASH IORT (intraoperative radiation therapy)
- Advanced EBRT including heavy-ions (helium, carbon ions, etc.)
- High-Resolution, Volumetric Patient Specific QA (FLASH & conventional EBRT)
- Boron Neutron Capture Therapy (BNCT)
- Spatially Fractionated EBRT (minibeam, grid, lattice, microbeam)

Conclusions

- 1) SBM provides real-time, precise 2D beam tuning, profiling & imaging with spatial resolution ~ 10 μm
- 2) High sensitivity & dynamic range: single-particles to ~ 10¹¹ pps/cm² (~ 10 nA, depending on the particle)
- 3) Linear Response to \geq 5 orders-of-magnitude for ⁸⁶Kr⁺²⁶ (e.g., single-particles to ion-beam current of 5x10⁵ pps)
- 4) Novel applications and <u>radiation hardness</u> for two specialized scintillator materials
 - PM: thin to ultra-thin materials produce <u>clean imaging and accurate profiling</u>
 - PM in <u>air</u> at rates of O(10) Gy/s \rightarrow <u>no "observable" degradation</u> over first 9 kGy
 - Ultra-thin PM tested: from \sim **1- 200 \mu m** sample thickness
 - HM: order-of-magnitude higher signal output than much thicker CsI(TI) standard
 - HM in air at rates of O(10) Gy/s \rightarrow *minimal degradation* of 0.02%/kGy
- 5) SBM design operates in high vacuum (or in air)
- 6) SBM real-time analysis for NP is **<u>1 sec</u>**, but for proton-FLASH-RT is **<u>< 2 μs</u>** for camera operating at 20,000 fps
- 7) Scintillators can be remotely inserted in beam or changed without breaking vacuum.
- 8) Larger potential commercial market for medical radiotherapy applications than for NP