

Radiation Hardened Infrared Focal Plane Arrays

Yong Chang, Sushant Sonde, Silviu Velicu

EPIR Inc., Bolingbrook, IL 60440

Thomas Kroc

Fermi National Accelerator Laboratory, Batavia, IL 60510

Supported by DoE NP SBIR Phase IIA program under contract# DE-SC0018587

August 16th, 2023

Goal:

Fabrication of cost-efficient video cameras using infrared sensors that have high resistance to radiation.

Specifications

- Target temperature: ~300°C
- Sensitive in the 5 μ m and longer spectral range (MWIR)
- Operate at standard frame rates (>25 frames/s, hence the maximum sum of the integration time and the data transfer time up to 40ms)

Challenges:

Radiation tolerance for prolonged operation

- Under neutron fluxes $(10^5 \text{ n cm}^{-2} \text{ s}^{-1}) =>$ short period of time
- Total absorbed dose of ~ 1MRad/yr. => Total dose (TD) effects

Company Overview

- Pioneered molecular beam epitaxy (MBE) HgCdTe material growth
- Decades of experience with II-VI material and device fabrication and testing
- Headquartered in Bolingbrook, IL
 - Commercial supplier of MBE materials and devices to a broad customer base
 - > Provider of materials, focal plane arrays and sensors solutions
 - Close collaboration with two DOE National Labs from Chicago area: ANL (7 miles, CNM) and Fermilab (15 miles)

1. II-VI Material Manufacturing

- Grow II-VI materials to enable standard and custom imaging products
- HgCdTe on CdZnTe and Si-based substrates (using CdTe buffer layer)
- 2. Focal Plane Arrays and Camera Development and Production
 - > Standard and specialty array detectors, FPAs and imaging sensors
- 3. R&D Solutions using II-VI Technology
 - > Material, device & system modeling, optimization, fabrication and testing
 - Full process development to meet customer specifications

Infrared Focal Plane Array Manufacturing

EPIR, Inc.	Com	nmercial-grade Soluti	Custom Solutions									
Format	320×256 30 μm pitch	640×512 15 μm pitch	1280×720 8 μm pitch	640×512 20 μm pitch	1280×512 20 μm pitch							
Relative Die Size	20×11mm	20×11mm	21×10mm	23×14mm	30×18mm							
Layout				40_یس	с							

EPIR manufactures both standard and custom devices in the NIR to LWIR range ٠

eSWIR on SI, 195K MWIR on Si, 110K

Synergistic DOE Activities

Advanced integration technology

• Integration of ETROC1/ETROC2 with LGAD

Thermal stress aware design

Multi-tier, small pixel ASIC

• VTROC: Vertical Timing Read Out Circuit

- 1. Detector: Small-pixel AC-LGAD
- 2. Front end preamp + discriminator + charge injector
- 3. Circular buffer memory array + readout logic
- 4. PCB: AC-LGAD
- 250µm pixel pitch
- 8×8 pixels
- Multi-tier ASICs
- 4-tier integration scheme

Radiation tolerant LGAD/AC-LGAD

• Advanced LGAD and AC-LGAD designs

- Multi-layer epitaxial growth
- In-situ doping allows design flexibility

Displacement Damage Effects in HgCdTe and Related Materials

Neutrons cause FPA degradation mainly through displacement damage effects. Damage is characterized by Non-Ionizing Energy Loss (NIEL).

Non-Ionizing Energy Loss (NIEL) Si

Non-Ionizing Energy Loss (NIEL) HgCdTe

J.E. Hubbs, et al., IEEE Trans. Nucl. Sci. 54, 2435 (2007)
V. M. Cowan, C. P. Morath, J. E. Hubbs, Appl. Phys. Lett. 101, 251108 (2012)

1. HgCdTe material growth and characterization

2. Design devices and photomasks with sub-pixel pattern optimization

3. Fabrication of detectors with improved radiation hardness

4. Integration of the detectors with radiation-hardened ROIC

5. Packaging and testing detectors and cameras under neutron flux

Growth and Characterization of HgCdTe Heterostructures

Device Fabrication – Standard Process

- EPIR optimized process control for array fabrication
- Background limited dark current performance achieved

Fabricated FPA with Subpixels for Improved RadHard

Common contact deposited after activation annealing

										•								
			•															
								-			_	-						
-			-		•					•			•					
				Lar	ath a 6 88 m													
				0	-											.0		
									ath 7 0.75 µm									
			•															
							-		Le	ngfn - 0.63 ;	un .							
-	-		-			•		•		*		•	•	•		•	•	
1000																		
				-														
			•			•			•									
-	-		-			-	-							•	•	•	•	
		•	•		•	*		*						•				
			-			-			-			-						
			•	•		•									•	•		
														-				
-			-			-	-								•	•	•	
	-	-	-	_		-						_						
													-	-		-	-	1

Fermilab Ne

Neutron Exposure Test

Proton

Choice of ROIC

 Senseeker's ROIC and ROIC mounted on PCB were tested under >1×10⁹ n/cm²/s (up to 2×10⁹ n/cm²/s) neutron irradiation for 2 hours

after neutron irradiation

- No significant performance degeneration was observed after neutron exposure
- ROIC was purchased in wafer scale
- FPAs were fabricated using Senseeker's footprint design

Pixel area

0.1124 µm

Fermilab Energy Deposition in Material: MCNP Calculation at FNAL EPIR

Deposited energy on HgCdTe FPA: through all electron, photon, proton and neutron mechanisms

MCNP Camera Modeling by Adapting FNAL's Code

- Energy density deposited (F6 Tally) in the FPA chip.
- Include energy deposited in Si, CdTe and HgCdTe

MCNP Camera Modeling

- Energy density deposited (F6 Tally) in the FPA chip simulated using MCNP.
- Damage to semiconductor chip may not necessarily stem from neutrons during neutron exposure.
- All 4 mechanisms including neutron, high energy photon, proton and electron contributed to the energy deposition into FPA sample

Effect of Thinning Si Substrate

- Almost identical behavior with normalized mass.
- Thin substrate samples have less energy deposited directly through neutrons while more energy through h/p/e, especially through e with energy less than 10keV.
- Low energy electrons deposited in Si. Si may have less influence on HgCdTe FPAs as long as a proper grounding is present.

NEDT/Detectivity Before and After Neutron Flux Exposure (~10¹² n/cm²) EPIR

Before Neutron flux

Total doses: ~10¹² n/cm², Corresponding to 10⁵ n/cm²s, 1/3 year, 24hrs continuous exposure.

After Neutron flux

- Median D* was not changed
- Pixel numbers with high noise (lower D*) tail side increased and was split into a separate peak.

NEDT/Detectivity Before and After Neutron Flux Exposure (~10¹² n/cm²)_{EPIR}

Total: ~10¹² n/cm², 10⁵ n/cm²s, 1/3 year, 24hr continuous exposure

After Neutron flux

Before Neutron flux

I-V Characterization of FPA Before and After Neutron Exposure

Imaging with EPIR-Assembled IR Cameras

3-5µm MWIR

After 10^{12} n/cm² neutron exposure

osure

after 1.5×10^{13} n·cm⁻² neutron exposure under an instant flux of 2×10^9 n \cdot cm⁻² \cdot s⁻¹

after an extra temperature cycling from 100K to room temperature

The circled area shows the defective pixels recovered after temperature circling.

Our T2SL nBn FPAs also shows good functionality, however Sb decay emits β before being released from FNAL's neutron facility

Camera Design

Camera Design

- Various mirror designs were evaluated using MCNP
- Si based mirrors show that they introduce less energy deposition to HgCdTe FPA

Energy Deposited on FPA After Using Mirror

After using mirror, the energy deposited on FPA through neutron was significantly reduced.

•

е

10

100

10

- The energy deposited on FPA through proton mechanism was eliminated
- Less possibility for • introducing harmful displacement damage

Energy (MeV)

LN2 Cooled Camera Head

- Already used in FPA testing
- Also tested under • direct neutron irradiation environment with lenses, filters and ZnS windows (with ARC)

Cameras based on Stirling Cooler (LN2 free)

Imaging Test using Stirling Cooler

Summary and Future Works

- HgCdTe is the preferred infrared material for use in high radiation environment applications. EPIR has grown the HgCdTe wafers with desired characteristics using MBE
- Lateral collection device architectures were used to reduce dark current in implantation-formed p-n junctions. Photomasks were designed and FPAs were fabricated
- ROIC, LN2 Dewar and lenses tested at Fermilab: maintained functionality after 10¹² n/cm² exposure, corresponding to ~ 1/3 year, 10⁵ n/cm² continuous operation
- HgCdTe FPAs maintained functionality after 1.5×10¹³ n·cm⁻² neutron exposure and 2×10⁹ n ·cm⁻² ·s⁻¹ instant irradiation flux with only minor performance degradation. Equivalent to > 2 year continuous peak operation
- Most of the sub-optimal FPA pixels after irradiation can be recovered and restored to the original condition after temperature cycle (77 K to 300 K)
- Fabrication of IR cameras with high radiation resistance capabilities
- Will employ direct bonding to reduce cost and improve FPA operation stability
- We will continue to work with national labs for further testing of existing components and for testing new FPAs and cameras

Stirling

cooler

LN2 cooled Camera head

THANK YOU