Q-FLEXINC. SBIR/STTR Exchange PI Meeting August 15-17, 2023

Making low radioactivity connections

JULYA

DUIN

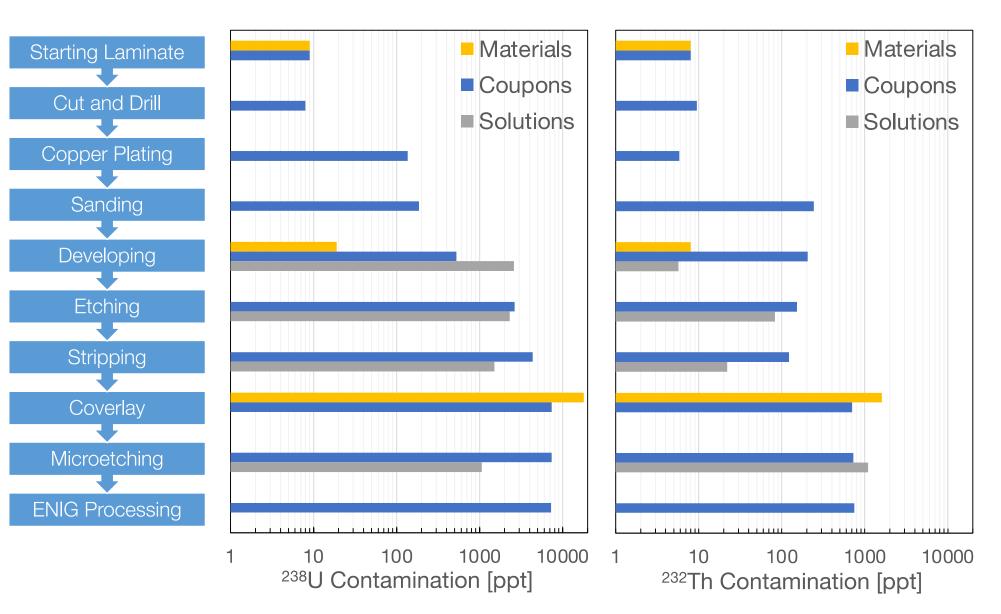
Pete Uka Raj Patel Mario Perez Jay Patil

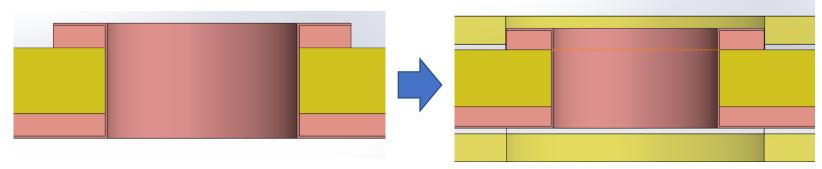
CCD

Richard Saldanha Isaac Arnquist Maria Laura di Vacri Nicole Rocco Tyler Schleider

PNNL

Fullerton City California


- California based Manufacturer of Flexible circuits and Assembly with 25 years of History.
- We offer Design and Layout services- Concept to completion.
- Completed Six projects Phase I/II SBIR/STTR.
- Serving Aerospace, Medical and commercial sectors.


- Class 1000 cleanroom
- IPC class -3 compliance
- Quantum Computing- Flex with Niobium, Phosphor Bronze, Constantan, Aluminum
- Extra long Cables: Volume production of 2ft x 8 ft long flex. Completed 15 ft. long 4 layer flex.
- Current R & D on plating copper over Nb.
- Low Radioactivity Cables (This SBIR): Nuclear and High Energy Particle Physics Projects

Contamination during Fabrication

- Performed systematic assay of contamination level at each step, as well as measuring any solutions used in the process and materials added
- Final contamination levels are ~ 7000 ppt
 ²³⁸U and ~700 ppt ²³²Th
- Realized that there are several steps with significant increases in contamination
- Need different approach to address each issue

Coverlays

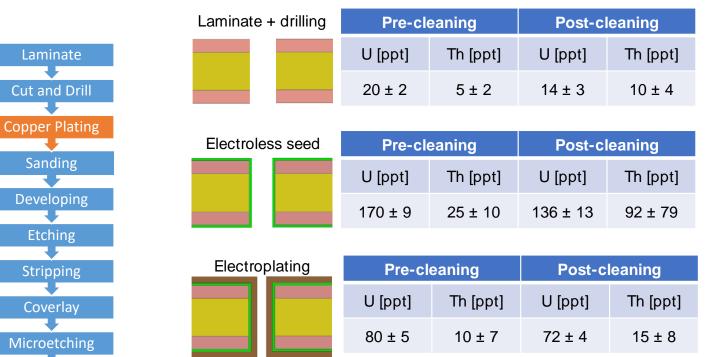
A coverlay is an insulating layer that is applied over the outer surfaces of a cable to prevent oxidation and shorting of the exposed traces.

Typically consists of a polyimide and adhesive layer

We surveyed several commercially available coverlays and found a fairly large range of contamination levels (> 100x variation in ²³⁸U).

Acrylic-based adhesives were noticeably cleaner than epoxy-based adhesives.

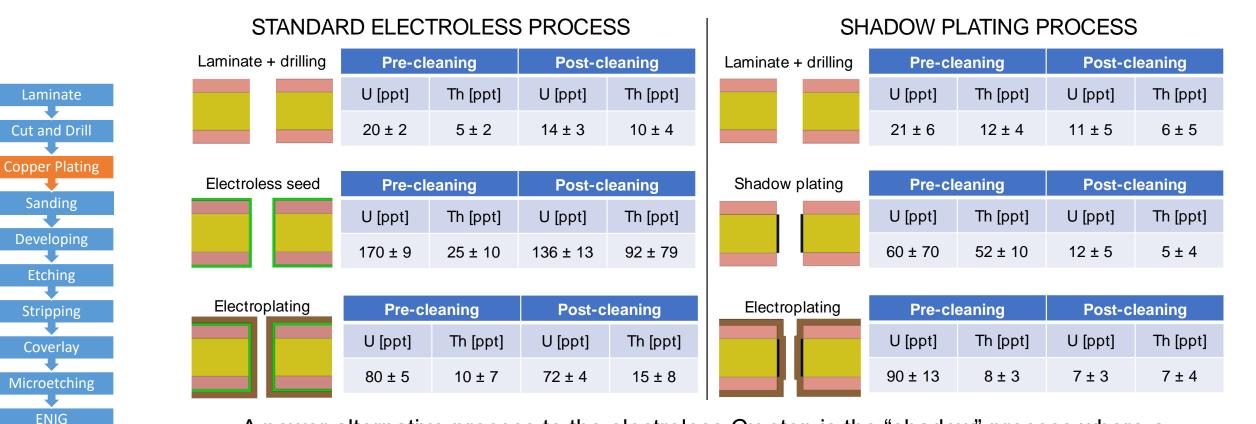
Sample	PI Thick.	Adh. Thick.	Notes	²³⁸ U	²³² Th	^{nat} K
-	[mil]	[mil]		[pg/g]	[pg/g]	[ng/g]
Taiflex FHK1025	1	1		18000 ± 2000	1600 ± 140	
ShinEtsu CA 333 [3]	1	1	Use epoxy adhesive	5179 ± 424	< 242	
ShinEtsu CA 335 [3]	1	1.4		12020 ± 390	9370 ± 340	
Dupont LF0110	1	1		314 ± 13	49 ± 8	4000 ± 2000
Upilex C120	2	1		30 ± 2	280 ± 20	21300 ± 300
Panasonic MCL Plus 110	1	1	Use acrylic adhesive	78 ± 4	45 ± 7	5030 ± 140
Dupont FR 70001 [3]	0.5	0.5		< 1065	< 473	
Dupont FR 0110 [3]	1	1		< 818	< 273	
Dupont LF0100	0	1	Adhesive in LF0110	16 ± 4	39 ± 11	
Imitex MI-100	0	1	Adhesive	9 ± 5	< 14	


5

Copper Plating

ENIG

Interconnections between layers (vias) need to be plated with copper


STANDARD ELECTROLESS PROCESS

This process involves several solutions and catalysts, and both the seed and plating layers cover the entire copper surface, potentially trapping contamination

We were unable to reduce the contamination below ~ 50 ppt U through cleaning

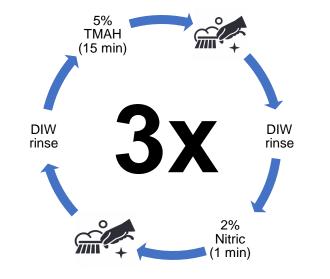
Copper Plating

Interconnections between layers (vias) need to be plated with copper

A newer alternative process to the electroless Cu step is the "shadow" process where a thin carbon layer is added only to the polyimide region and involves fewer chemicals The resulting coupons had contamination levels consistent with the base laminate level, roughly 6x cleaner in ²³⁸U than the electroless seed process

Sanding

- Laminate Cut and Drill Copper Plating Sanding Developing Etching Stripping Coverlay Microetching
- Prior to the application of photoresist, the cable surface is mechanically prepared for optimal film adhesion and clean release.
- The scrubbing process was found to increase ²³²Th contamination, presumably due to the implantation of small amounts of the abrasive material into the laminate.
- Cleaning was tried but found ineffective
- Switched to only using commercial pads made from SiC, rather than previously used pads that used aluminum oxide, titanium dioxide, and other fillers and pigments.
- This led to roughly a 10x reduction in ²³²Th contamination after this step

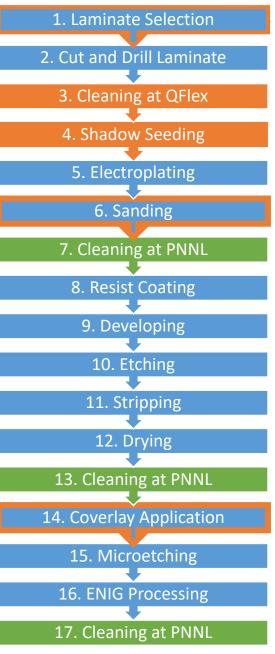


Ingredient	% by Wt
Silicon Carbide Mineral	25-40
Nylon Fiber	20-35
Quartz Silica	0.05-0.2
Cured Resin	30-45
Hookit [™] Backing	0-10

Cleaning Results

	²³⁸ U [ppt]	²³² Th [ppt]
After Stripping Before Cleaning	6000 +/- 200	27 +/- 3
After Stripping After Cleaning	20 +/- 1.3	< 9.3

Cleaning brings contamination back down to the tens of ppt levels


Blue: Standard Step Orange Outline: Modified Step Orange: New Step Green: Step done at PNNL

Simple 2-layer Cable

Cable	Rep.	238 U	²³² Th	^{nat} K
		[pg/g]	[pg/g]	[ng/g]
	1	20 ± 2	<9.8	<38
	2	21 ± 2	<9.4	<37
SiPM Cable (Custom)	3	18 ± 2	<8.6	<34
	4	20.9 ± 1.2	< 10.4	47 ± 6
	5	19 ± 2	<10.3	32 ± 8
	6	18.8 ± 1.2	<12.3	<20
	7	19.6 ± 1.5	<12.0	52 ± 7
	8	19 ± 3	<12.0	28 ± 7
	Avg.*	20 ± 2	<12.3	40 ± 12

	²³⁸ U [ppt]	²³² Th [ppt]
Starting Laminate	8 +/- 6	9 +/- 4
Standard Cable Trial 1 Standard Cable Trial 2	6200 +/- 100 1300 +/- 300	63 +/- 5 16 +/- 6
Our Final Cable	20 +/- 2	< 12.3

We have managed to reduce the ²³⁸U contamination by > 65x

Blue: Standard Step Orange Outline: Modified Step Orange: New Step Green: Step done at PNNL

Full 2-layer cable

Cable	Rep.	238 U	²³² Th	^{nat} K
	-	[pg/g]	[pg/g]	[ng/g]
	1	32 ± 2	12 ± 3	559 ± 13
	2	31 ± 4	11 ± 3	529 ± 12
	3	29 ± 2	<8.9	572 ± 12
CCD Cable (Custom)	4	32 ± 3	16 ± 4	569 ± 13
	5	31 ± 2	<11.7	558 ± 12
	6	30 ± 2	<10.9	546 ± 9
	7	30 ± 2	<11.1	515 ± 9
	Avg.*	31 ± 2	13 ± 3	550 ± 20

	²³⁸ U [ppt]	²³² Th [ppt]
Commercial Cable	2600 +/- 40	261 +/- 12
Our Cable	31 +/- 2	13 +/- 3

We have managed to reduce the ²³⁸U contamination by ~100x, ²³²Th by ~ 20x

Even with the addition of vias, coverlays, and ENIG, the U and Th contamination levels are at ~10's of ppt

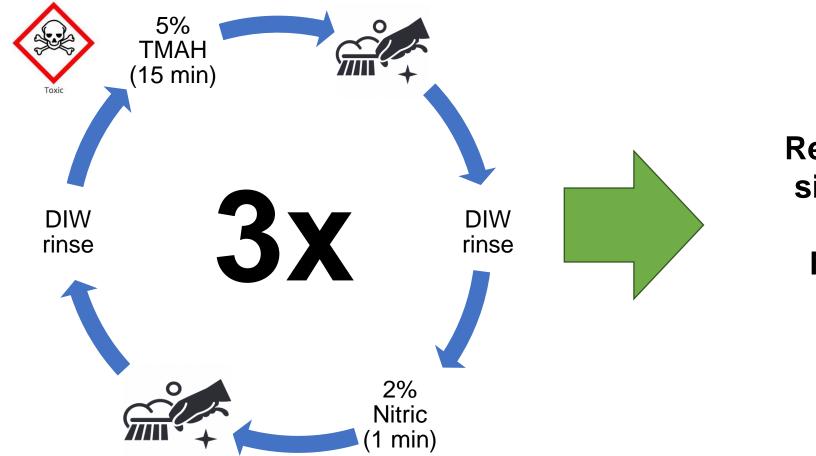
Comparison to Literature

Cable	Copper Layers	Polyimide Layers	Coverlay	Surface Finish	²³⁸ U	²³² Th	^{nat} K
	[µm]	[µm]			[pg/g]	[pg/g]	[ng/g]
nEXO SiPM [This Work]	18 (x2)	50.8 (x1)	No	No	20 ± 2	<12.3	40 ± 12
nEXO SiPM [Comm.]	18 (x2)	50.8 (x1)	No	No	1300-6200	16-63	
DAMIC-M CCD [This Work]	18 (x2)	50.8 (x1)	x2	ENIG	31 ± 2	13 ± 3	550 ± 20
DAMIC-M CCD [Comm.]	18 (x2)	50.8 (x1)	x2	ENIG	2600 ± 40	261 ± 12	170 ± 50
EXO-200 [3, 12]	18 (x1)	25.4 (x1)	No	No	412 ± 47	< 117	
EDELWEISS III [7, 14]	18 (x4)	25/125 (x3/x4)	No	No	650 ± 490	3700 ± 2500	2100 ± 840
DAMIC at SNOLAB [4]	18 (x5)	25.4 (x4)	x2	ENIG	4700 ± 400	790 ± 120	940 ± 60

Ultra-low radioactivity flexible printed cables

Isaac J. Arnquist, Maria Laura di Vacri, Nicole Rocco, Richard Saldanha, Tyler Schlieder

Pacific Northwest National Laboratory, Richland, Washington, 99352 USA


Raj Patel, Jay Patil, Mario Perez, Harshad Uka

Q-Flex Inc., Santa Ana, California, 92705 USA

Summary

- Commercial flexible cable options are very radioactive (~1000's of ppt ²³⁸U, ~100's of ppt ²³²Th), limiting the use of cables in experiments
- By working closely with a commercial company and systematically investigating the fabrication process, we have identified the key sources of contamination
- Following a diverse approach of developing new cleaning steps, modifying fabrication processes, identifying radiopure raw material, and improving mechanical handling, we have reduced the U and Th backgrounds to the level of ~ 10's of ppt ²³⁸U and ²³²Th
- We have demonstrated that coverlays, vias, and ENIG metallization can be added with only small increases to the radiopurity – possibly simplifying the design and layout of low background cables

Simplifying the Cleaning Process

Replace with a simple 2 step process -Results are promising

Acknowledgements

We are extremely grateful to our national laboratory partners at PNNL for providing all the testing services as well as valuable technical guidance. We would like to specifically thank **Richard Saldanha, Isaac Arnquist, Maria Laura di Vacri, Nicole Rocco, Tyler Schleider**

We would like to thank Dave Moore and the entire **nEXO collaboration** for providing the design for our "simple" cables and Alvaro Chavarria and the entire **DAMIC-M collaboration** for providing the design of the "full" cables

This work was funded by DOE Small Business Innovations Research (Phase I 2021, Phase II 2022-2024)

-FLEX INC.

PNNL

nEX®