

Novel Cryogenic High Voltage Breaks (CHVB)

PI: Chris Rey

Topic: 37c

Grant: DE-SC0021608 Energy to Power Solutions

119 Century Park Dr. Tallahassee, FL 32304 www.e2pco.com

Outline

- e2P Overview
- Program Motivation
- Phase II Program Overview
- CHVB Schematic, Design, & Analysis
- CHVB Testing
- Commercial Outreach
- Path Forward

e2P - A Company Introduction

Energy to Power Solutions (e2P)- performs **early-stage R&D** of both Low Temperature Superconducting (LTS) & High Temperature Superconducting (HTS) devices, their associated cryogenics, and cryogenic High Voltage (HV) components \rightarrow enabling technologies for **military**, **space**, **fusion energy**, **commercial & medical application** applications

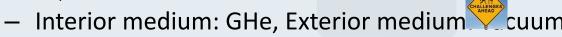
- Founded 1999
- ~50 % (US Govn't contracts) & ~50 % (commercial)
- Labs Located @ TCC in Tallahassee, FL

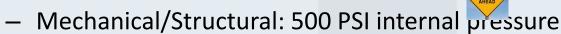
Program Motivation

- Cryogenic High Voltage Breaks (CHV-Breaks) & Bushing (CHV-Bushings) electrically isolate cryogenic devices & equipment operating at High Voltages (HV) from grounded components & structures. CHV-Bushings also transmit electrical power into cryogenic space.
- State-of-the-Art (SOA) *ceramic* CHVB's are <u>notoriously unreliable</u> and prone to frequent *micro-cracking* & hence *leaking*.
- CHVB's leaking into cryogenic vacuum spaces can be prohibitively expensive to repair (e.g. ITER, CERN, etc.) or lead to premature failure (e.g. power equipment)
- For $V_{op} > 100$ kV or non-magnetic there is no suitable commercial product
- Requirements: Low cost, mechanically robust, HV standoff, radiation resistant, hermetic, repeated thermal cycling, high internal pressure, non-magnetic

Phase II Program Overview

Work Scope A: Thermally Insulating CHVB for ANL w/ R. Vondasek


- $V_{op} \sim 150 \text{ kV}$
- CHALLENGES
- Interior medium: LN2, Exterior medium: atmosphere


- Radiation: No
- Mechanical/Structural: NA
- Quantity: 2-3
- Commercial opportunity: Low

Work Scope B: Radiation Tolerant CHVB for Commercial Fusion

 $-V_{op} \sim 30 \text{ kV}$

Radiation: 10 MGy

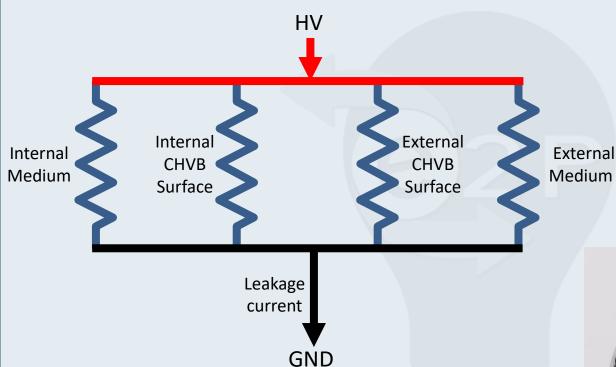
- Quantity: > 1000
- Commercial Opportunity: Very high

Phase II Program Overview

Work Scope C: General R&D for CHVB Design & Fabrication

- $-V_{op} \sim 375-750 \text{ kV}$
- Interior medium: 2 K LHe, Exterior medium: vacuum
- Radiation: NA
- Mechanical/Structural: 100 PSI internal pressure
- Quantity: > 4-5
- Commercial Opportunity: low

CHVB Requirements



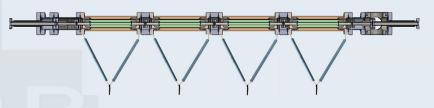
Properties		E2P CHVB	SOA Ceramic	PI Testing	PII Testing
	High Voltage >100kV				X
Electrical	Breakdown			X	
	Creep			X	
Mechanical	Thermal Cycling Resilience			X	Χ
	Compressive Strength			X	
	Tensile Strength				Χ
	Torsional Strength				Χ
	High Internal Pressure				Χ
	Hermetic			X	
	Accelerated Life*				Χ
Other	Non-magnetic			X	
*commercial order pending	Radiation Resistance				Χ
	Low Cost				Χ

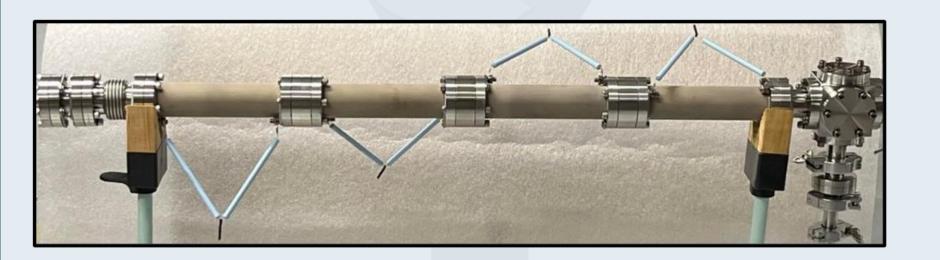
CHVB Electrical Schematic

- Must insure all 4 electrical paths have high R
- Vacuum (easy) $V_B > 10^{6-7}$ V/cm
- Atmosphere (difficult) V_B ~ 10⁴ V/cm
- LN2 (moderate) $V_B \sim 5e10^5 \text{ V/cm}$

CHVB Design Process

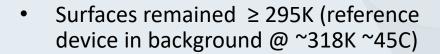
- 1) Rapid Virtual Prototyping
 - Large number of rough/approximate E-field simulations
 - Simplified CAD models
- 2) Down selection based upon E-field Stress Reduction (EFSR)
- 3) Detailed designs
- 4) Manufacture
- 5) Test
- 6) Iterate designs as needed

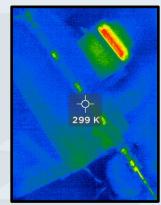



Thermally Insulating CHVB @ ANL

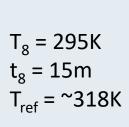
HV LN2 Transfer Line: CHVB Electrical Testing

- Hipot to 80 kV w/o LN2
- Hipot to 80 kV w/ LN2 interior annulus
- GHe leak test w/LN2 interior annulus
- ANL to test on CARIBU > 150 kV
- 2nd Generation design for outdoor use in electrical grid




Testing: Thermal Gradient

- LN₂ pumped through array over 15-minute period
- Thermal imaging used to capture thermal gradient and determine cold points


- Device should not develop exterior surface condensation under expected conditions
- 2nd Gen unit needed for Grid applications

$$T_1 = 299K$$

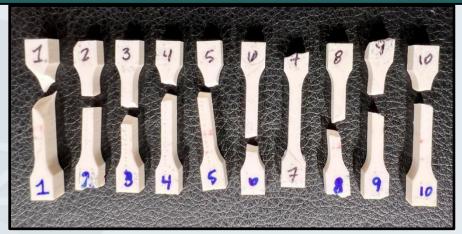
 $t_1 = 0m$

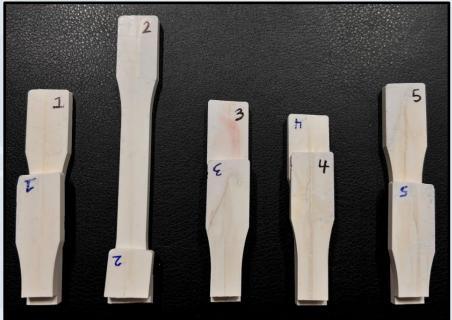
$$T_5 = 296K$$

 $t_5 = 7m$

Radiation Tolerant Epoxy Evaluation

- Mechanical testing of:
 - Tensional Strength (ASTM D638)
 - Compressive Strength (ASTM E9)
 - Torsional Strength (ASTM D4065)
- ASTM compliant procedures include:
 - sample design
 - Fabrication
 - Testing
 - post-processing of data
- Procedures will be used to determine compliance of materials and components




Radiation Tolerant Epoxy Evaluation

Mechanical Testing:

- Pictured top: Small form factor (SFF)¹ tension samples
- Pictured bottom: Large form factor (LFF) tension samples
- Both small and large samples utilize the same ASTM D638 & E9 "dog-bone" shape and proportions i.e. gauge² length is ~4x the gauge width
 - 1) shape, proportions
 - 2) reduced cross-sectional area section of sample

Testing: Mechanical Data

UTS data for epoxy
PEB-C

Results inconsistent: emphasizing need for process improvement

	Cample	Ultimate Tensile Strength (MPa)			
	Sample	Small FF	Large FF		
: or nt	1	-	14.96		
	2	29.52	-		
	3	-	25.65		
	4	-	22.10		
	5	27.66	13.36		
	6	25.32	-		
	7	-	-		
	8	24.05	-		
	9	26.12	-		
	10	28.24	-		
	Average ±	26 82 + 2 02 MPa	19 02 + 5 92 MPa		

26.82 ± 2.02 MPa

Standard Deviation

19.02 ± 5.82 MPa

Path Forward

- Work scope A: >90 % complete
 - Field test @ ANL (R. Vondrasek) → 100 %
- Work scope B: Low Cost, High Throughput Manufacturing & Component Testing
 - Develop low-cost volume manufacturing techniques
 - Develop low-cost/repeatable/reliable high volume LN2 thermal cycle testing techniques
 - Develop low-cost/repeatable/reliable high volume GHe testing techniques
- Work scope C: Component Test Multiple Prototypes
 - Continue UTS, UCS, and torsional testing of CHVB's & rad.-tolerant epoxies
 - Expand into CHV-Bushings
- Commercial Outreach
 - Commercial Fusion companies
 - ORNL NP
 - Electrical Grid (possible PII-B or PII-C)
 - Others in progress

Acknowledgements

Funded by DOE under SBIR contract DE-SC0021608

DOE PM Michelle Shinn, Ph.D.

ANL Rick Vondrasek

e2P Trever Carnes, Ben Andrews, Luke Remillard

Energy to Power Solutions (e2P)

119 Century Park Dr.

Tallahassee, FL 32304

www.e2pco.com

(865) 850-1327