PH IIB PROJECT

An ASIC with a Low Power Multichannel ADC for Energy and Timing Measurements

DoE award number: DE-SC0018566 PI: Anton Karnitski Date of review: 08/15/2023

- The company, its specialization/expertise
- Specifications for the multichannel ASIC for energy and timing mesurements
- ASIC core architecture with event-driven backend for detector streaming readout

2

- Phase IIB project objectives
- Modifications done for the 2nd Gen ASIC
- Assembled parts
- Updated PCB design
- 2nd Gen ASIC testbench setup
- ADC testing results
- Phase IIB project schedule
- Future plans

Pacific MicroCHII

Pacific

COMPANY

Pacific MicroCHIP Corp. is incorporated in 2006. It is headquartered in Culver City, California. Main focus – providing IC/ASIC design services and turnkey solutions. The office includes the working space and a laboratory for ASIC testing.

Core expertise:

- Analog (ADC/DAC, CTF, VGA, BG, LDO)
- Mixed Signal (PLL, CDR, SerDes, MDrv, TIA)
- RF (LNA, Mixer/Modulator, PA)
- Digital (RTL, Synthesis, P&R, Timing Closure, DFT, Verifications)
- Layout (CMOS/SiGe) down to 7nm

MULTICHANNEL ADC ASIC SPECIFICATION

32Ch 12-bit 200MS/s ADC Array ASIC **FEATURES:** Frame **SER 32:8** assembly 32 independent channels Calibration 32x JESD204B CPU 8b/10b Programmable sampling rate of **FIFO FIFO** ADC BIAS 32x Data 32xClk 200/100/50 MS/s 12-bit / 10b 0.2GHz 32x. 1Vpp differential input signal ADC channel [0] JESD204B output H Clk gen SER 10:1 Up to CML in_p 12b CLK 3.2GHz • ENOB >9-bit 100MHz .2/6.41 MUX CMI data/ 200 MS/s **100Q Diff** Gbit/s in_n' clk SER 16:1 input Programmable synch 16b signal 4b+12b data Direct DATA output bandwidth 0.1-0.3 GHz clk[0 Integrated event-driven digital 3.2GHz backend 100Ω Diff Buffer MUX JESD204B output data interface 200MHz Buffer Clock tree[3.2/0.2]GHz 32xClk 32x Data Extended temperature range 0.2GHz 12h **Digital back-end** 32x 32x $-40C_{+}+125C$ DATA Shared **FIFO 48b** FIFO TX 50 Mbit/s Event and time UART builder Event CLK Low power consumption Digital stamp Memory Trigger 50MHz I2C interface for ASIC control

4

Register map
I2C Interface

US Patent Pending

ADC CORE ARCHITECTURE

FEATURES:

ADC CORE BLOCK DIAGRAM:

- 12b SAR ADC architecture
- Segmented 3t-9b CDAC
- Optional external/internal ADC reference voltage source
- Fractional reference voltage
- Dual comparator
- Asynchronous logic
- Built-in FSM for comparator offset compensation
- Built-in FSM for CDAC nonlinearity calibration

ADC TIMING DIAGRAM: 1ns 4ns Track/ sampling Conversion

Pacific MicroCHIP Corp.

US Patent Pending

RAW ADC DATA OUTPUT

Mode	JESD 204B Ianes	ADC per lane	Lane data rate	ADC data rate	
Full speed	16	2	6.4Gbps	200MS/s	
Half speed	8	4	6.4Gbps	100MS/s	
Quarter speed	4	8	6.4Gbps	50MS/s	

- Programmable ADC sampling rate of 200/100/50 MS/s
- Constant JESD204B output data rate 6.4Gbit per second
- Shared JESD204B output data interface between 2/4/8 ADCs reduces the number of interface lines, allowing high system integration density

EVENT-DRIVEN BACKEND

- This ADC output is monitored by a digital comparator with a programmable threshold
- When the ADC input exceeds threshold, a time stamp is assigned, and the peak value of the incoming ADC data is recorded.

Event-driven digital backend was built in collaboration with LBNL. And we want to thank Dr. Carl Grace for his effort.

• When the event is completed, the relevant information is assembled into a packet by the Event Builder block. When the shared FIFO is ready, events stored in the channel FIFO are read out.

OUTPUT DATA FRAME


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Bits	Field Name	Comment			
[123]	Parity	Used to monitor integrity of data transmission.			
[122]	Event Declaration	0 → test event (see text), 1 → normal			
[121:119]	Fixed	Fixed bits - should always read value 3'b011			
[118:107]	Window Interval	Determines the number of ADC samples to examine looking for a peak.			
[106:102]	Channel ID	5-bit unique identifier.			
[101:54]	TOA (Time of Arrival)	The timestamp of where the ADC value passed the threshold. Covers ~16 days at a 200 MHz clock rate.			
[53:42]	TOP (Time of peak)	Supports shaper peaking times of up to 20 $\mu$ s at a 200 MHz clock rate.			
[41:30]	TOT (Time over Threshold)	Supports shaper pulse widths of up to 40 $\mu$ s at a 200 MHz clock rate.			
[29:18]	Peak Value	12-bit peak value recorded in the event.			
[17:6]	Channel Threshold	12-bit threshold value used during this event.			
[5:0]	Shared FIFO usage	For diagnostics and debugging.			



50Mbps / 124+2bit / 32ch

≈ 12.4k events per second per channel

### EVENT DRIVEN DIGITAL BACKEND TEST RESULTS



The event-driven backend was designed in collaboration with Dr. Carl Grace of LBNL. It is capable of extracting the TOT, TOP, TOA, and the peak amplitude of incoming pulse signals.





: SNR = -8.26 dB THD = -5.45 dB SFDR = 0.15 dB SINAD = -8.44 dB SW = 2758 AVG = 514.2

Pacific MicroCHIP Corp.

## PHASE IIB PROJECT OBJECTIVE

Pacific MicroCHIP Corp.



The performance parameters of the 1st Gen ASIC are required to be improved in order for the device to be used commercially. Several design mistakes were identified during the chip testing and must also be addressed within Phase IIB in the 2nd Gen ASIC and the evaluation PCB.

Phase IIB objective	Status
Fix issues discovered during 1 st Gen ASIC evaluation	Done
Redesign and fabricate the chip (2 nd Gen).	Done
Package the chips.	In process
Update the design and fabricate new PCB.	Done
Test and characterize the 2 nd Gen ADC ASIC.	In process
Prepare updated datasheet and evaluation board for marketing.	In process
Submit deliverables to the DoE.	Pending

10

## MODIFICATIONS DONE FOR THE 2nd GENERATION ASIC



Improve the ADC ENOB valueIncreased reference voltage, updated comparator design, added CDAC redundancyMake an offset calibration FSM to account for the 3 MSBs of the ADC output code.Dedicated ADC data output for calibration purposesImprove the ADC output code.Dedicated ADC data output for calibration purposes	Problem (1 st Gen)	Solution (2 nd Gen)
Make an offset calibration FSM to account for the 3 MSBs of the ADC output code. Dedicated ADC data output for calibration purposes Dedicated ADC data output for calibration purposes	Improve the ADC ENOB value	Increased reference voltage, updated comparator design, added CDAC redundancy
Thermometric Binary         Binary           12-bit         [12,11,10,9,8,,1,0]           Synch         [11,10,9,8,,1,0]           12-bit         [12,11,10,9,8,,1,0]	Make an offset calibration FSM to account for the 3 MSBs of the ADC output code.	Dedicated ADC data output for calibration purposes
200MS/s [12:7] DAC FSM J DAC FSM J J J J J J J J J J J J J	Thermometric Binary 12-bit 200MS/s [12,11,10,9,8,,1,0] [12,11,10,9,8,,1,0] [11,10,9,8,,1,0] [11:6] [11:6] [11:6] [11:6]	Thermometric Binary 12-bit 200MS/s [12,11,10,9,8,,1,0] [11,10,9,8,,1,0] [11,10,9,8,,1,0] [11,10,9,8,,1,0] [11,10,9,8,,1,0] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7] [12:7]
An older CPU with a bug was implemented on the ASIC. The bug prevents the CPU from executing the first instruction properly	An older CPU with a bug was implemented on the ASIC. The bug prevents the CPU from executing the first instruction properly	Updated CPU design
and to read back the program memory through the I2C interface after writing it.	and to read back the program memory through the I2C interface after writing it.	

## MODIFICATIONS DONE FOR THE 2nd GENERATION ASIC



#### Problem (1st Gen)

Solution (2nd Gen)

An ADC sampling clock frequency divider is built into the clock distribution network of the ASIC. However, the frequency of the clock going to the DSP is not scaled down proportionally with the divided clock frequency.	3264100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100 <tr< th=""></tr<>
DAC feedback loop stability issues (feedback shorted for 2 DACs).	The second modification was to increase the resolution of the DAC from 9bit to 10bit, improve offset cancellation precision by reducing the offset compensation step.
A	
Pacific MicroCHIP Corp	12

## MODIFICATIONS DONE FOR THE 2nd GENERATION ASIC



#### Problem (1st Gen)

#### Solution (2nd Gen)

It was discovered that two spurs are introduced on the ADC output signal spectrum. These spurs are detected at the input signal frequency ±50MHz (the clock frequency of the UART).





#### : SNR=58.9dB THD=-63.4dB SFDR=64.8 dB SINAD=57.6dB ENOB=9.27 SW=4037 AVG=2049.4

#### 200MHz clock source, UART enabled, UART clock=200MHz



#### Pacific MicroCHIP Corp.

13

### 2nd GENERATION CHIP AND ASSEMBLED PART



#### 2nd Gen ASIC label @PMCC20SC640-01A

2nd Gen ASIC bumps



**P/N: P20640B** (P20640A shown since 2nd Gen parts assembling in process)





### **UPDATED PCB DESIGN**



#### **PCB** revision A





- SMA connectors used to handle analog input signal / output data
- Dimensions 9.0 x 8.2 inches

 Samtec's Bulls Eye connectors used to handle analog input signal / output data

• Dimensions 5.6 x 7.7 inches

### **2nd GEN ASIC TESTBENCH SETUP**





## **ADC LAYOUT COMPARISON**



#### 1st Gen ASIC top level layout:

#### 2nd Gen ASIC top level layout:



### ADC TESTING RESULTS PERFORMANCE COMPARISON



#### 1st Gen ASIC 2nd Gen ASIC: 69.5 9.6 -3 80 120 20 40 60 100 SFDR (dB) — ENOB -3.5 69 9.55 -4 ENOB vs. Input ADC swing vs input 68.5 9.5 Signal Frequency: -4.5 frequency(MHz) 68 9.45 9.4 [pit] 9.35 >9.25bit up to -5 SFDR [dB] 67.5 [dB] 100MHz -5.5 67 -6 9.35 -3dB 66.5 -6.5 BW depending on LPF code: 9.3 -7 40MHz to 60MHz @ -1dB 66 80MHz to >100MHz @ -3dB -7.5 9.25 65.5 -8 65 9.2 → LPF C0 → LPF C4 → LPF C7 n 20 40 60 80 100 120 Input Frequency [MHz] SNR vs. Input Signal Frequency: >56.5dB up to 100MHz SNR vs. Input Signal Frequency: >58dB up to 100MHz 59 61 58 magnitude [dBFS] 60 57 - - - - - - - - - - - - - - - Jigitized signal magnitude [dBFS] 59 SNR [dB] 28 -2 56 SNR [dB] -3 55 ~2dB SNR **Digitized signal** -4 57 54 improvement 53 56 (average) -6 52 -6 55 -7 51 Magnitude Comp Magnitude C 10 20 70 80 90 100 30 40 60 54 -8 Input Frequency [MHz] 10 20 30 50 60 70 80 90 100 ٥

Pacific MicroCHIP Corp.

SNR Comp.

Magnitude

Input Frequency [MHz]





32 ADC channels enabled JESD204 output data interface **disabled** 

32 ADC channels enabled JESD204 output data interface **enabled** 



Average power 11.7mW / ch

Average power 33.3mW / ch



### Channel #0 before calibration: SFDR 63dB / ENOB 7.3 / SNR 45.7dB



: SNR=45.7dB THD=-64.6dB SFDR=63 dB SINAD=45.7dB ENOB=7.3 SW=3750 AVG=2044.4



### Channel #0 after calibration: SFDR 69.3dB / ENOB 9.43 / SNR 59dB



: SNR=59dB THD=-68.2dB SFDR=69.3 dB SINAD=58.5dB ENOB=9.43 SW=3741 AVG=2047.1



### Channel #31 before calibration: SFDR 63.5dB / ENOB 8.9 / SNR 56.2dB



: SNR=56.2dB THD=-62.7dB SFDR=63.5 dB SINAD=55.4dB ENOB=8.9 SW=4029 AVG=2056.9



### Channel #31 after calibration: SFDR 65.8dB / ENOB 9.52 / SNR 60.2dB



: SNR=60.2dB THD=-65.5dB SFDR=65.8 dB SINAD=59.1dB ENOB=9.52 SW=3744 AVG=2049.3

### TESTING RESULTS: ADC PERFORNACE SUMMARY



CHANNEL	CALIBRATION CODES					ADC PERFORMANCE				
NUMBER	CMP 1 ofs	CMP 2 ofs	CDAC C14	CDAC C15	CDAC C16	CDAC C17	SNR (dB)	SFDR (dB)	SINAD (dB)	ENOB (Bit)
0	144	20E	2E	2C	32	2F	59.5	67.5	58.7	9.45
1	164	1D3	2D	2D	35	33	58.7	70.7	58.4	9.41
2	1B7	1DB	2F	2D	35	35	60	67.3	58.9	9.5
3	19B	1D0	2B	27	2F	2D	57.9	72.4	57.6	9.28
4	15B	20A	2D	2B	37	37	59.7	67.7	59	9.51
5	144	22D	2F	2D	31	35	60.2	66.2	59.2	9.54
6	195	23C	30	2F	43	43	59.8	66.8	58.6	9.44
7	15A	201	2D	2D	35	31	59.4	65.5	58.4	9.4
8	14A	1BA	2F	2F	35	31	59.5	68.3	58.9	9.49
9	1B8	218	36	34	38	40	56.4	74.2	56.2	9.04
10	161	1B2	2B	27	2B	2D	59.7	67	58.4	9.42
11	15D	22C	2B	23	2B	2B	57.8	68.1	57.2	9.21
12	155	23B	2D	2B	37	33	60.4	67.7	59.5	9.59
13	1C6	236	2F	35	47	45	57.2	66.7	56.6	9.1
14	181	203	2B	25	2F	2F	59.1	67.8	58.4	9.41
15	1A0	1F3	30	31	37	33	56.9	71.1	56.6	9.12
16	192	1D3	30	34	45	43	58.8	62.7	57.3	9.22
17	142	205	2D	2B	33	33	59	70.3	58.6	9.44
18	162	216	2F	2F	35	35	60.4	66.9	59.2	9.54
19	145	203	2D	25	2D	2D	59.9	67.6	59.1	9.52
20	191	1B5	2D	2F	43	41	59.5	67.4	58.7	9.46
21	1A6	1E4'	2D	25	33	31	59	70.9	58.5	9.43
22	204	20E	31	37	45	47	60.7	67	59.3	9.55
23	147	20B	2D	25	2F	2F	58.8	67	58	9.35
24	1B8	205	2F	2F	41	35	59	66.2	58.2	9.37
25	1A5	202	2E	2E	35	33	61.1	66.6	59.9	9.67
26	182	203	32	33	43	43	59.9	66	58.9	9.5
27	192	1E1'	2B	27	2F	2D	59.6	67.5	58.9	9.49
28	186	1C3	2D	27	2B	2B	60.8	67	59.7	9.62
29	183	21E	2D	27	2D	2B	60.5	66.5	59.3	9.55
30	183	205	33	37	49	49	60.3	65.9	58.6	9.44
31	153	1E3'	2F	31	37	37	61.3	66.9	60.1	9.7

### **ASIC DATASHEET**





#### Description

This is a power efficient 32-channel 12-bit 200MS/s ADC with a digital event building back-end and the JESD204B compliant output data interface.

#### **Operational Capabilities**

- 32 independently operated channels
- Programmable sampling rate of 200/100/50 MS/s
- 1Vpp differential input swing
- Input signal bandwidth higher than 0.2GHz Integrated event-driven digital back-end
- Optional JESD204B compliant output data interface
- Extended temperature range -40C ... +125C
- Power consumption < 12mW/channel
- I2C interface for ASIC control
- Solder bumped die in a 15mm x 15mm ball BGA

P20640B 32-Channel, 12-bit, 0.2GS/s ADC, JESD204B, Event-Detection **Digital Backend** 

#### Applications

- Multichannel gamma-ray spectroscopy systems
- (DoE) X-ray detectors (DoE)
- Synthetic aperture spectrometer instruments (NASA)
- Test and measurement instrumentation Multichannel data acquisition devices
- Synthetic aperture radars and lidars
- Ultra-wide band software defined radios
- Automation industry

- Output data rate of 16x6.4Gb/s
- Estimated chip layout footprint 7.8mm2
- package



bit. 0.2GS/s

ent information is nt Builder ared FIFO, the

ASIC Block Diagram



cated FIEO for each l is reset for further ata readout request fic FIEOs are nction with one of Hz or B) 3.2GHz. a two-stage al multiplexer is th its selection on the PCB. This he digital al control. The the clock by the digital adequately urce, whereas the enable the high-B interface

2-bit, 0.2GS/s ent-Detection vital Backend We are in the process of drafting the datasheet for the designed ASIC, which will encompass a comprehensive overview of the ASIC's functionalities, detailed specifications, and recommended setup and calibration procedures.

Anticipate the initial draft to be prepared in September 2023.

Pacific MicroCHIP Corp.

Page 4 of 15

25

al channel 0 al channel 1

## PHASE IIB PROJECT SCHEDULE





We are slightly ahead of schedule because we were able to assemble a few parts manually in our lab and start characterization. The project is expected to be completed as planned on March 4, 2024.

### **FUTURE PLANS**



- Test/characterize the produced 2nd Gen ASIC.
- Create ASIC datasheet
- Start shipping the ASIC parts to select customers.

# **THANK YOU!**

Application Ideas for the ADC ASIC are appreciated!