Ultrafast Radiation Hard Gallium Oxide Scintillators

Amlan Datta*
CapeSym, Inc., Natick, MA, USA

Project Award Number: DE-SC0021476
Period of Performance: 04/04/2022 – 04/03/2024

* datta@capesym.com

Presented Aug 15, 2023
DoE NP PI Meeting
Program Overview

Program Goal: **Radiation Hard Scintillators for Crystal Calorimetry**

Gallium Oxide (β-Ga$_2$O$_3$) Scintillators

- 01: Non-Hygroscopic
- 02: High-density
- 03: Robust
On CapeSym

- Founded 1992
- Employees: 14
- Science + Manufacturing:
 - Materials engineering and processing
 - Crystal growth
 - Materials Characterization
 - Radiation detectors and instruments
 - GEANT4 Scintillation modeling, Thermal modeling.
- Strong participation in a number of US government-supported initiatives:
 - DOE, DHS, DoD, NIH, NASA
CapeSym Commercial R&D Capabilities

GEANT4 Scintillation Modelling

Scintillator Crystal Growth

Radiation Detection Instruments Development

Radiation Detection Characterization

8/13/2023

DoE NP PI Meeting
CapeSym Manufacturing Capabilities

- Today: ~250 medium size detectors/year
- All process stations + furnaces designed and built at CapeSym
 - Low cost
 - Can scale rapidly – 3 months
- Automated crystal growth, cutting and polishing
- Low moisture glove boxes, multiple gamma sources, DD neutron generator, environmental chamber, oxygen tester
- High-throughput encapsulation process
- Rugged encapsulation with PMTs and SiPM arrays
 - Meets ANSI environmental standards
CapeSym Team

Shariar Motakef (PM)
Detector Development

Hao Mei (Scientist)
Crystal Growth and Device Characterization

Reyhaneh Toufanian (Scientist)
Device Fabrication and Characterization

Piotr Becla (Principal Scientist)
Device Characterization

Krys Becla
Equipment Design & Fab

Amlan Datta (PI)
Crystal Growth and Detector Fabrication
Program Overview

Program Objectives:

Our primary focus in this work is to pioneer the development of β-Ga_2O_3 scintillators which is expected to redefine the benchmark scintillator properties of current detectors used for crystal calorimetry experiments in nuclear physics:

01 Extremely Radiation Hard

02 Fast Decay Time (\sim2ns)

03 High Light Yield (>20 times PbWO$_4$)

04 Low-Cost Crystal Growth Technique: Float Zone!
Program Overview

Phase II Objectives:

Develop radiation hard scintillators for crystal calorimetry:

- Enhance the scintillation and radiation hardness properties of the β-Ga$_2$O$_3$ crystals using purification, doping, and annealing.

- Develop a reproducible crystal growth technique for growing large diameter β-Ga$_2$O$_3$ scintillator crystals.
Why β-Ga_2O_3 Scintillator:

1. Extremely radiation hard, demonstrated up to 160MRad (γ).
 - We tested up to 2MRad (About 8 days of beamtime at 60Co irradiator): need more beam time

2. Good scintillation properties: High Light Yield (15k Ph/MeV, highest reported)
 - We measured a highest value of ~6500 Ph/MeV: room for improvement

3. Fast decay (~tens to hundreds of nanosecond primary decay)
 - We measured the decay times around 2ns: target achieved!
Why β-Ga$_2$O$_3$ Scintillator:

4. Robust, temperature- and moisture-insensitive.

5. Low cost and high yield manufacturability using Float Zone.

6. Highly scalable – Multiple options.

7. R&D investment for high power substrates (beyond SiC and GaN)
Phase II Approach

Establishment of Float Zone Growth Capability
- Impurity Reduction;
 - Feed rods Preparation;
 - Growth recipe development.

Optimization of the Crystal Growth Process
- Doping/Co-doping of β-Ga$_2$O$_3$;
 - Growth of large volume crystals.

Material and Detector Characterization
- Radiation hardness tests;
 - Development of complete detector modules.
1. Establishment of FZ Growth Capability at CapeSym

Advantages of FZ:
- No containment issues
- Process materials with melting temperature up to 3000°C
- Relatively quick turn-around time
- Low capital cost and short learning curve

Ultrahigh Temperature Crystal Growth facility At CapeSym

First β-Ga₂O₃ CapeSym Crystal May 2023
2. Optimization of the Crystal Growth Process

Feed Rods Optimization

Feed Rod Pressing

Feed Rod Annealing
2. Optimization of the Crystal Growth Process

Crystal Growth using Float Zone technique

- **Fast setup and turnaround time** - so it allows testing of doping and co-doping methodically and rapidly.
- **No crucible interaction** – Lesser defects.

- **Low cost** - Doesn’t need iridium crucible
 - 2-inch crucible ~ $75k
 - Needs repair after few growth ~ $25k
2. Optimization of the Crystal Growth Process

Crystal Growth using Float Zone technique

In situ photograph of a growing β-Ga$_2$O$_3$ crystal in the FZ furnace at \sim1900°C.
3. β-Ga$_2$O$_3$ Crystal Characterization

Optimized high-purity transparent β-Ga$_2$O$_3$ crystal grown after parameter optimization.

137Cs Gamma spectra yielding a light yield of 6446 ±716 Ph/MeV.

6.3% Energy Resolution at 662keV
3. β-Ga$_2$O$_3$ Crystal Characterization

Decay curves for 4 different types of standard scintillators obtained from calibrated set up

Decay curves for β-Ga$_2$O$_3$ Detectors: ~2ns Decay

<table>
<thead>
<tr>
<th>Name</th>
<th>Measured Value (ns)</th>
<th>Literature Value (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Scintillator</td>
<td>3.08</td>
<td>0.7-3.3[5]</td>
</tr>
<tr>
<td>LYSO</td>
<td>37.01</td>
<td>38.5-62.9[6]</td>
</tr>
<tr>
<td>Nal</td>
<td>267.21</td>
<td>250[7]</td>
</tr>
<tr>
<td>BaF2</td>
<td>1.87</td>
<td>0.88[8]</td>
</tr>
</tbody>
</table>
4. Doped β-Ga$_2$O$_3$ Crystal Growth

Yb$^{3+}$ (left) and Nd$^{3+}$ (right) doped β-Ga$_2$O$_3$ crystals growth using OFZ technique.

137Cs Gamma spectra from β-Ga$_2$O$_3$:Yb scintillator yielding a light yield of 6620 ±735 Ph/MeV.
5. Radiation Hardness

137Cs Gamma spectra from β-Ga_2O_3 measured during 2MRad ^{60}Co irradiation

Both Detectors are of SAME size

137Cs Gamma spectra from PbWO_4 measured during 2MRad ^{60}Co irradiation
5. Radiation Hardness

β-Ga_2O_3

^{137}Cs Gamma spectra from β-Ga_2O_3 measured during 2MRad ^{60}Co irradiation

^{137}Cs Gamma spectra from multiple β-Ga_2O_3 detectors measured during 2MRad ^{60}Co irradiation

Not just for One device, measured for 26 β-Ga_2O_3 detectors
Future Tasks

Phase II Future Tasks

• Further optimization of the crystal growth process
• Scale up of the β-Ga$_2$O$_3$ crystals – other growth techniques
• Material and Detector Characterization – Single photon timing measurements
• Radiation hardness measurements using gamma, neutrons and protons – need help
• Development of detector modules complete with digital signal processing electronics
Thank you

Questions: datta@capesym.com