

Scintillating Bolometer Crystal Growth and Purification for Neutrinoless Double Beta Decay Experiments

DOE Contract: DE-SC0015200, SBIR Phase IIA 5/28/2019 - 2/27/2023

RMD Principal Investigator: Michael R. Squillante DOE Technical Contact: Michelle D. Shinn RMD Team: Josh Tower, Huicong Hong MIT: Lindley Winslow, Joe Johnston

August 25, 2022

RMD Basic and Applied Research and Development

Materials Science

Scintillators

Semiconductors

X-ray Imaging Screens

Ceramic Lasers and IR windows

Sensors

TIBr Gamma Imaging Array

Wide Band Gap Geiger Photodiodes

Neutron Radiography

Systems

RadCam™

Space Weather monitor

E2MH: Handheld RID

Commercial Products Based on RMD's Gamma-Neutron Scintillators

CLYC + PMT

CLLBC + SiPM

Commercial Instruments with RMD Detectors

Kromek D5 RIID

FLIR R440 RIID

ANSTO CORIS360 Imager

Thermo-Scientific RadEye SPRD-GN

Thermo-Scientific RIIDEye

Low-Background Crystals for Nuclear and High-Energy Physics

Understanding the Neutrino

- A key goal of Nuclear Physics is elucidating the nature of the neutrino What are the masses of the neutrino mass eigenstates?
 Is the neutrino its own antiparticle?
- The answers to these questions can change the Standard Model of physics.
- Searching for **neutrinoless double beta decay** $(0\nu\beta\beta)$ is one of the highest priority experiments to answer these questions.
- A next generation experiment to search for 0vββ is CUPID: CUORE Upgrade with Particle Identification
 - CUPID will use Li₂MoO₄ (LMO) scintillating bolometers.

Selection of Isotopes with Double-beta decay

Candidate Isotopes for 0vββ Experiments

	end point	%
isotope	energy (MeV)	abundance
48	4.271	.187
150	3.367	5.6
96	3.35	2.8
100	3.034	9.7
82	2.995	8.8
116	2.802	7.5
130	2.527	24.6
136	2.457	8.9
76	2.039	7.8
	isotope 48 150 96 100 82 116 130 136 76	end pointisotopeenergy (MeV)484.2711503.367963.351003.034822.9951162.8021302.5271362.457762.039

 100 Mo half-life = 7.8×10¹⁸ y 82 Se half-life = 0.97×10²⁰ y

Requirements for isotope

- 1. Must decay by double beta process.
- 2. Good natural abundance and ability to enrich.
- High endpoint energy (above 2.6 MeV ²³²Th gamma ray).
- 4. Major constituent in a scintillating crystal.

Li₂MoO₄ Scintillating Bolometer

- Is both the source and detector of $0v\beta\beta$
- Detects heat and light signals simultaneously.

Scintillating Bolometers are needed for better particle discrimination and background reduction

The goal is to complete the research and development needed to implement production of Li_2MoO_4 (LMO) scintillating bolometer crystals suitable for neutrinoless double-beta decay experiments.

- Synthesize and purify Li₂MoO₄ from the high purity raw materials.
- Grow single-crystal ingots using Czochralski to fabricate 45 mm cube detectors. ✓
- Develop processes for shaping and polishing crystals to maintain radio-purity. \checkmark
- Deliver detector crystals to the CUPID Collaboration for cryogenic evaluation. Scintillating bolometer testing includes all operational characteristics, such as light output and radioactivity background.
- Grow LMO using isotope **enriched** ¹⁰⁰**Mo** and produce full-spec detectors to qualify as a supplier for the CUPID experiment.

LMO Synthesis and Purification

- Start with best purity raw materials
 - Good sources of the chemicals identified in previous phase
- MoO₃ (99.9995%) + Li₂CO₃ (99.99%) High Purity Powders
 - $MoO_3 + Li_2CO_3 \rightarrow Li_2MoO_4 + CO_2$

Greenish or brownish crystals can result if best purity materials are not used.

Czochralski Growth of Li₂MoO₄

July 2019

~4 cm OD ~200 grams

June2021

65mm OD x 65mm 813 grams

Repeatable growth process

Czochralski Crystal Growth Furnace

Fabrication of Li₂MoO₄ to 45 mm Cubes for CUPID

Before Polishing

Manufactures a supersonal and a supersonal

After Polishing

Final polishing/cleaning is done in a clean inert atmosphere to prevent surface contamination.

CUPID: a next generation bolometric neutrinoless double beta decay experiment

- **CUPID**: **C**UORE **U**pgrade with Particle **Id**entification
- CUPID builds on the expertise and lessons of CUORE, CUPID-Mo, and CUPID-0.
- CUPID will consist of about 1500 hybrid heat-light detectors for a total isotope mass of 250 kg (¹⁰⁰Mo).
- The required performance in terms of energy resolution, alpha rejection factor, and crystal purity have been demonstrated.

* GiovanniBenato_TIPP2021(2).pdf

Light versus Heat Chart for RMD-Grown LMO

Calibrated Heat Spectrum for LMO

Alpha Particle Discrimination

Alpha Particle Discrimination Power = 3.0

Summary and Plans for the Remainder of Phase IIA

Phase IIA Summary

- Scale up LMO crystal growth to 3" diameter by 3" long. Growth process optimized for production.
- Post-growth processing optimized to make the 45 mm cubes needed for CUPID.
 - Annealing, cutting, polishing, cleaning
- Samples of 45 mm cubes with natural-Mo produced and provided to MIT for cryogenic evaluation.
 - 2 or 3 more LMO cubes remain to be delivered to MIT for eval.
- Incorporation of enriched 100 Mo not done yet due to difficulty in obtaining the required 100 MoO₃.

LMO Production

- CUPID requires ~ 1600 LMO 45 mm cubes. RMD would increase production capacity to supply 40% of them.
- A crucial aspect of the LMO crystal manufacturing will be recovery of the valuable ¹⁰⁰Mo from the crystal scraps (tailings and residual melt).
 - Development of the chemical methods to reconstitute the scrap LMO back into MoO_3 and purify it sufficiently.
 - It might also be necessary to further purify the initial enriched ¹⁰⁰MoO₃, depending on its condition as-received from the enrichment facility.

