

Low Cost Data Acquisition Synchronization for Nuclear Physics Applications

Wojtek Skulski Principal Investigator

DE-SC0018467

Performed in collaboration with Argonne National Laboratory

SBIR Exchange, August 24, 2022

Outline

- Outline
 - The company and its capabilities.
 - Customers.
 - Success Story: LUX-Zeplin DAQ deployment.
 - Description of the Phase I project: Proof of principle.
 - Description of the Phase II project: The goal.
 - Phase II progress and achievements.
 - Future plans.

The company and its capabilities

- The team: three physicists, a senior software engineer, a part time engineering associate, and a manager. We regularly work with a local EE consultant.
- We worked with several interns listed on the Acknowledgements page.

Our focus:

Digital data acquisition (DAQ) for nuclear physics, high energy physics, Dark Matter search...

Our capabilities: Development of cutting edge instruments.

- Electronic design (conception, schematic, board layout).
 - Typically we outsource the assembly, unless the board is really simple.
- Firmware development for Field Programmable Gate Arrays (FPGA).
- Software development for embedded processors: Embedded Linux or micro controllers.
- Algorithms for pulse processing.
- Algorithm implementation in the FPGA (VHDL, Verilog) and in embedded processors (Pascal, Python, C).
- Processing data from nuclear detectors of any kind.
- Development of simple detector assemblies using scintillators, PMTs, or SiPMs.

Customers: Nat'l Labs, Universities...

SIMON FRASER UNIVERSITY ENGAGING THE WORLD

Los Alamos National Laboratory

🛟 Fermilab

National Superconducting Cyclotron Laboratory

Albert Einstein Center for Fundamental Physics

UNIVERSITÄT BERN

Brown University

Success Story: LUX-Zeplin Data Acquisition

- LUX-Zeplin is the world's largest Dark Matter Search liquid xenon two-phase TPC (10 ton LXe).
- We delivered **1,632 channels** of the DAQ electronics to the LZ Collaboration.
- No bad channels.

SkuTek

Instrumentatio

- The DAQ was deployed in Sanford Underground Research Facility at -4850' in Summer 2019.
- No problems were found with the DAQ while collecting signals since November 2019.
 - Continuous operation since deployment without any failures.

26 Logic Boards, sixteen 4 Gbps links each

51 Digitizers, 32 channels each

The Overview of the SBIR Project

Problem or situation that is addressed

GRETINA and Digital Gammasphere (DGS) both use LBNL 10-channel digitizers.

- The hardware is still in good shape.
- The legacy VME interface is limiting the data throughput.
- Spartan-3 FPGAs are almost full with the present firmware (more than 90%). It makes the new firmware developments quite difficult.

How this problem or situation is addressed.

- New digitizers with a new FPGA, on-board Linux, and fast streaming readout (1 Gbps and 10 Gbps per digitizer). VME was eliminated.
- The digitizers will be **backward compatible** with the GRETINA & DGS and **forward compatible** with GRETA.

In Phase I we delivered a proof of principle using our 40-channel prototype digitizer.

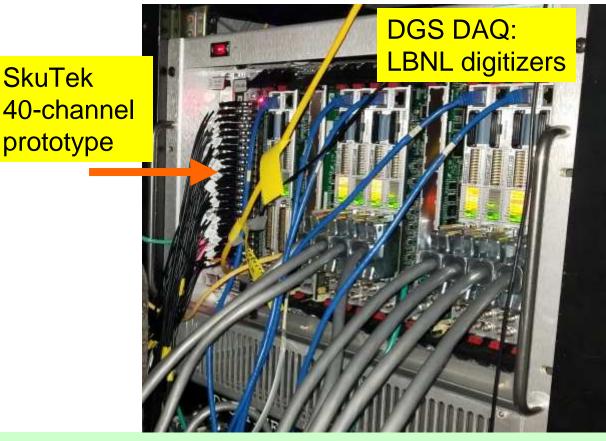
• We performed measurements with Gammasphere, using our 40-channel prototype in parallel with the present LBNL DAQ electronics. We established that our prototype *performed on par* with the established LBNL units.

SKUlek

SkuTek Instrumentation

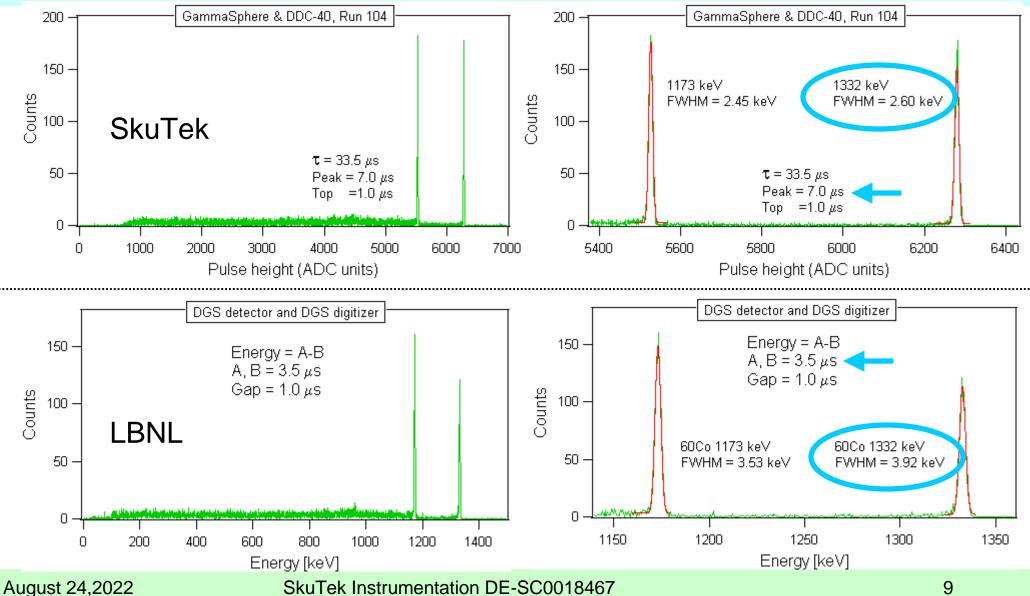
Test With Digital Gammasphere (DGS)

Gammasphere consists of 108 Compton-suppressed high-purity germanium (HPGe) detectors surrounded by the BGO anti-Compton shields.


DGS is equipped with the LBNL digital electronics originally developed for GRETINA. Each LBNL digitizer provides 10 channels, 14 bits @ 100 MSPS.

We used SkuTek 40-channel prototype to measure the same signals in parallel.

Gammasphere Detector Array


LBNL & SkuTek Electronics

SkuTek Instrumentation

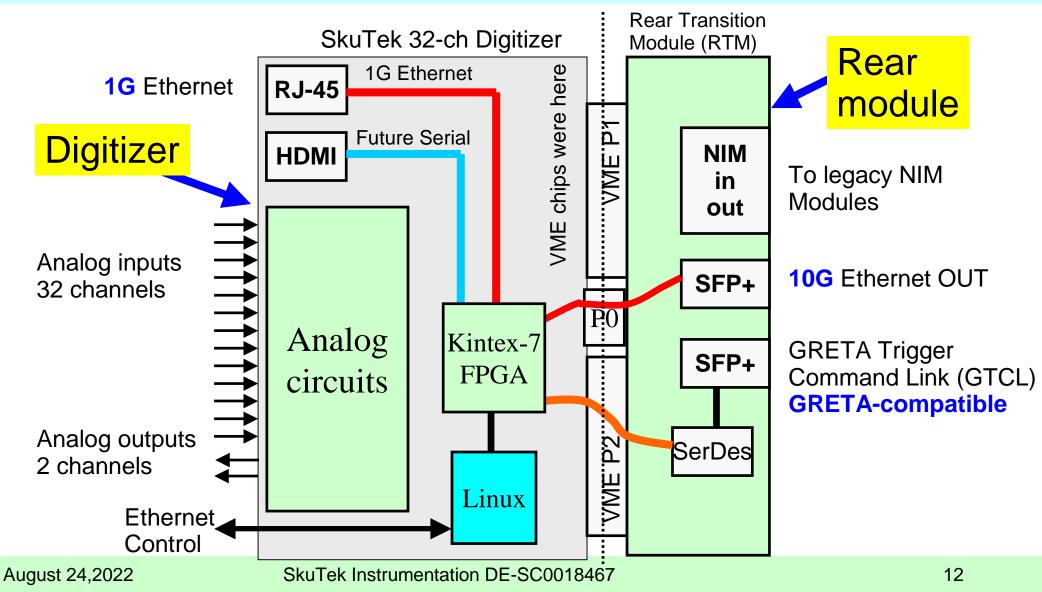
Phase I Was a Great Success

- Comparing the energy resolution with Co-60 and Gammasphere --> PASS!
- The resolution achieved with both devices was the same with equal running sums. We achieved a SQRT(2) better resolution when we applied 2 * *longer running sums*.

Phase II Project

Phase II Project

The challenge:


 How can we interface and integrate SkuTek digitizers with the established GRETINA or DGS environments, which are providing clock, trigger, and time stamp synchronization among many digitizers and logic modules?

How this situation was addressed:

- We modified the digitizer by adding the 1G outupt and making it GTCL compatible.
- We adopted the GRETA Trigger Command Link (GTCL), forward-compatible with GRETA.
- We replaced the VME with gigabit Ethernet (1G copper and 10G optical).
- We used on-board Linux for setup and control over Ethernet.
- We collaborated with the ANL Physics Division on GTCL and DSP firmware development.

SkuTek Conceptual Hardware Diagram

- VME interface was removed. Setup and control will be performed over Ethernet with Linux.
- 1G readout implemented in the front (up to ~110 MB/s). 10G in the back (10x faster).
- Heavy duty (and possibly noisy!) interfaces moved to the Rear Transition Module: 10G Ethernet and GRETA Trigger Command Link (GTCL).

SkuTek 32-Channel Digitizer With the Rear Transition Module

4 Gbps over the GTCL optical link, and **10 Gbps** over the optical Ethernet link. Both links will be present in every digitizer. Readout will **not** be shared among digitizers.

NEW 32-Channel Digitizer

NEW Rear Transition Module (RTM)

1 GbE (FPGA) Digital HDMI

32 Analog inputs

2 Analog outputs 1 GbE (Linux)

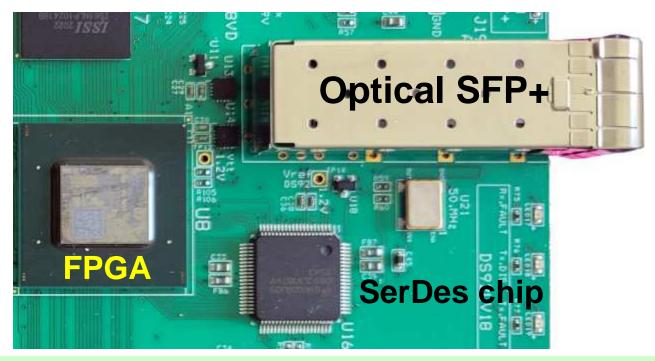
4 * NIM in

10 G Ethernet Optical GTCL Compatible with GRETA

4 * NIM out

Serial UART (Linux)

SkuTek Instrumentation DE-SC0018467

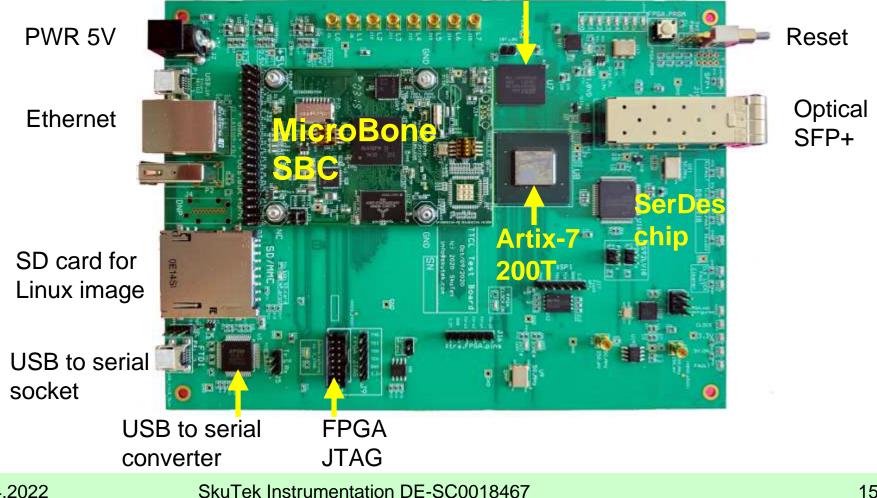

SkuTek System Integration With GTCL Protocol

How to connect hundreds of digitizers into a single, coherent DAQ system?

The answer: GRETA Trigger Command Link (GTCL)

GTCL was designed by John Anderson, Argonne National Laboratory

GTCL Tester board layout by WS, SkuTek Instrumentation



SkuTek Instrumentation

GTCL Implementation @ SkuTek

We created the GTCL Development Board to avoid traveling to ATLAS during COVID.

- MicroBone Single Board Computer (SBC) is setting up and controling the GTCL link.
- We developed GTCL communication with the digitizer using this board.

FPGA GPIO RAM 2 MB FPGA LEDs

Skulek **GRETA Trigger Command Link (GTCL)**

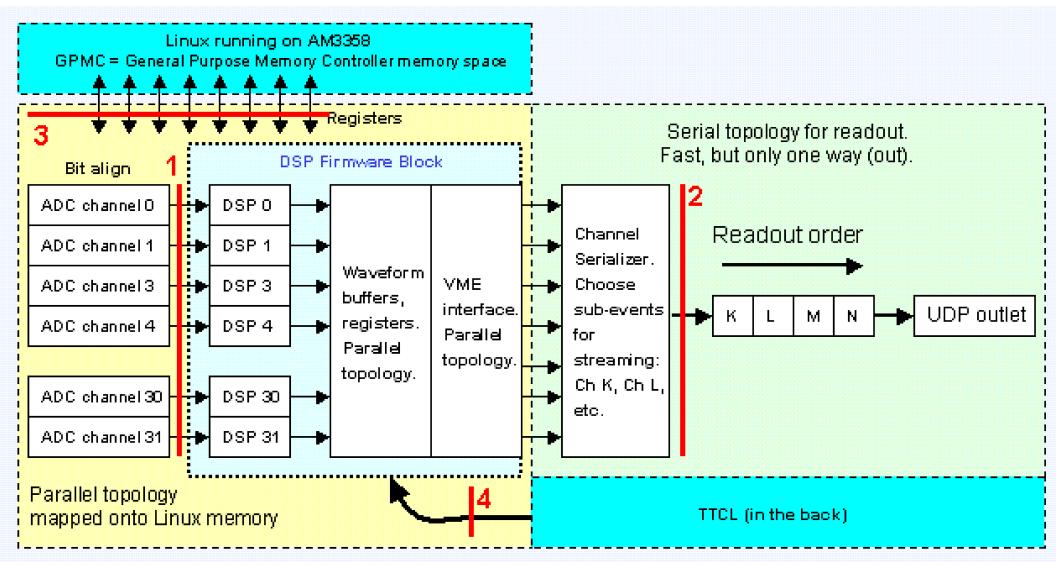
GTCL is back-compatible with the GRETINA / DGS *Time and Trigger Control Link* (TTCL). GTCL provides **clock**, **timestamp**, **trigger**, **and control** to the digitizer modules. Hundreds of digitizers can be served with a fixed-latency tree of GTCL fan-outs.

In addition to distributing the trigger, GTCL is also providing the functionality of the Precision Time Protocol (either PTP or White Rabbit), but in a **much simpler way**.

- 1. The reference 50 MHz clock will reach the ADCs with about ~100 ps jitter, depending on the clock distribution tree. Tens of ps possible after careful board design optimization.
- 2. All the **timestamps** in the entire system can be reset, using a single GTCL command.
- 3. The trigger condition is distributed among all digitizers in all auxiliary detectors.
- 4. GTCL can also distribute Run Control messages embedded in its frames (start, stop, etc.).
- 5. GTCL does not require run-time programming. All the GTCL specifics are implemented either in the SerDes hardware, or in the VHDL which is driving the SerDes data pins.
- 6. TTCL (the GTCL predecessor) was proven sufficient in dozens of experiments at ATLAS.
- 7. GTCL does not rely on any third parties, consortiums, or external bodies.
- 8. GTCL hardware is **simple** and **frugal** (as shown in the previous slide).

Instrumenta

Progress With DSP Firmware at ANL

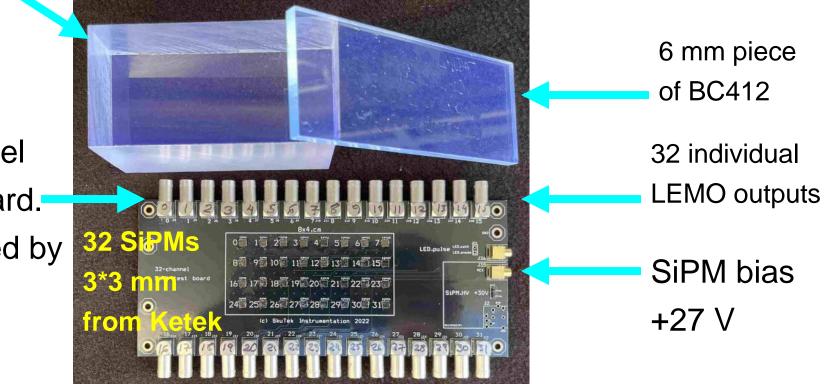

DSP Firmware was ported from the LBNL 10-channel digitizer to SkuTek 32-channel digitizer under SBIR subcontract with ANL. A summary by John Anderson:

- 1. ANL DSP pipeline firmware was expanded from 10 channels to 32 channels and integrated into the SkuTek firmware.
 - The ANL firmware was used with LBNL digitizers at ATLAS (DGS, DFMA, X-Array, HELIOS, MUSIC). Our digitizers will be ready for all of these!
- 2. Registers were implemented to control all parameters of each channel individually.
- 3. Reception of clock and commands from the GTCL / TTCL trigger system was demonstrated.
- 4. Streaming of digitizer data to the GTCL / TTCL trigger system is under development.
- 5. Discriminators and energy measurement were demonstrated with NaI(TI) and a test stand.
- **Status**: The development has been almost completed. Contingent upon COVID situation, we plan a trip to ATLAS to test the FW with real detector signals in the ATLAS environment.

SkuTek Instrumentation

Block Diagram of the Firmware

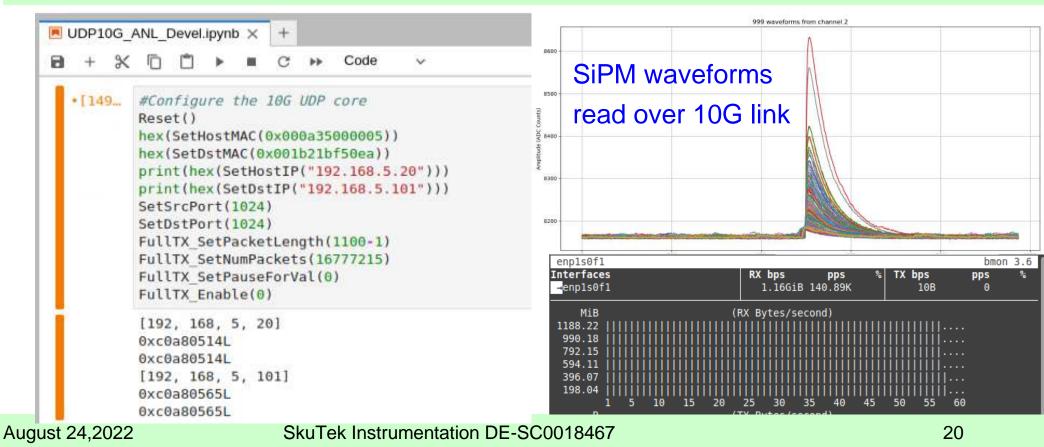
DSP Firmware was ported from the LBNL 10-channel digitizer to SkuTek 32-channel digitizer under SBIR subcontract with ANL. The diagram by John Anderson:



We Built Our Own 32-Channel Signal Source

- We did not have access to a 32-channel detector in Rochester.
- ATLAS has detectors. But we could not travel...
- We built our own 32-channel detector for testing coincidences.

Bicron BC412, 5 cm * 10 cm * 2.25" from E-bay for \$45 a piece. Cut to size by Tom Hall (iradinc on E-bay). A very nice and reliable person!

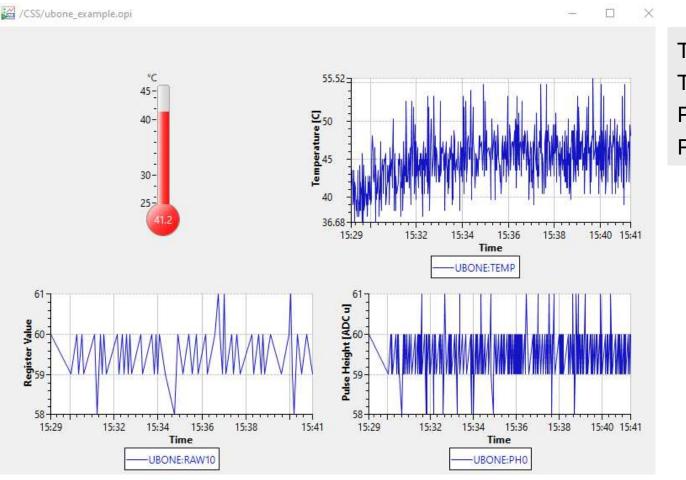

32-channel SiPM board. Developed by SkuTek.

SkuTek Instrumentation

Progress With Test & Control Software

Software is primarily developed by SkuTek.

- MicroBone SBC is setting up and controling the FPGA registers.
- Jupyter is the primary software controlling our products.
 - Jupyter is "remote Python" executed on the board over Internet under Linux.
 - In addition, we also used a lower level Remote Python Call (RPYC).
- The on-board Linux can also run **EPICS**. See the next slide.
- Status: We keep adding new functions to both the software and the firmware.



SkuTek Instrumentation Progress With EPICS Software at SkuTek

• Experimental Physics and Industrial Control System (EPICS) [1] is used at ATLAS to control the detectors.

• We implemented a simple EPICS application running on the MicroBone. It is showing how either we or the ANL personnel can integrate the MicroBone-based electronics into ATLAS control infrastructure.

[1] EPICS is documented at https://epics.anl.gov/

Temperature shown as thermometer Temperature vs time Pulse height via raw register access Pulse height via explicit state variable

Progress With 1G & 10G Streaming

Both 1G and 10G streaming are being developed by the SkuTek Consultant Eryk Druszkiewicz.

- MicroBone SBC is setting up and controling the FPGA registers under Jupyter.
- The data packets are streamed with UDP Protocol directly from the FPGA fabric.
 - 1 G streaming is extensively used with LZ DAQ System.
 - 10 G streaming is under development. It has not been used for "production physics" yet.
- We will provide 1G / 10G data streams directly compatible with GRETA / DGS header format.
- Our data streams will be seamlessly received and merged with other GRETA / DGS data.
- 10 G streaming is compatible with Phase II Data Management for High Speed, Distributed Data Acquisition (DE-SC0021502) awarded to SkuTek (Jeff Maggio is the PI).
- Status:
 - 1G streaming was extensively used by the LUX-Zeplin experiment.
 - 1G GRETA / DGS formatting is mostly finished. Testing is ongoing.
 - 10G development is ongoing.

Summary

Summary of Technical Achievements

- **Phase I:** We tested our 40-channel prototype digitizer with HPGe Gammasphere detectors.
 - Pulse height resolution was equivalent to LBNL digitizers.
 - The success led to the Phase II collaboration with the ANL.
- The goals of Phase II:

Skulek

Instrumentation

- Integration of the digitizers into the ATLAS DAQ, using the GRETA Timing and Command Link (GTCL), back compatible with previous TTCL.
- Fast readout using 1G or 10G Ethernet links directly from the digitizers.
- Setup and *monitoring* using the on-board *Linux*, separate from the fast readout.
- Achieve operation of our prototypes in the ATLAS environment (after the pandemic).
- Achievements:
 - Redesigned the digitizer to provide 1G Ethernet in front, and P0 connector for the back.
 - Developed the Rear Transition Module with the GTCL and 10G optical links.
 - Achieved the GTCL design throughput @ 4 Gbps, using the optical SFP+ module.
 - **Developed** the GTCL Test Board to continue work despite travel restrictions.
 - Developed Jupyter control software.
 - Developed an EPICS example running on Microbone. (EPICS is used at ATLAS).
 - Ported the ANL DSP and GTCL firmware to SkuTek digitizer. Testing at ATLAS is pending.

Future Plans

Continue development of *firmware* and *software* for our digitizers.

- Complete the development of *readout* over 10G Gigabit Ethernet.
- Complete software protocols and interfaces compatible with the ATLAS environment.
- Complete porting the ANL firmware from the LBNL digitizers to our digitizers.
 - This portion of the project is performed by ANL ATLAS personnel.
- Document *software API* for setup, control, and monitoring using the on board Linux.
 - Low-latency detector and signal monitoring with on-board Linux with Jupyter and RPYC.
 - Continue development of EPICS interfaces.
- Demonstrate operation of our prototypes in ATLAS environment (after the pandemic).
- *Manufacture* more digitizers and Logic Boards after the part supply crisis is resolved.

Acknowledgements

Joanna Klima, Jeffrey Maggio, David Miller, James Vitkus

Dev Ashish Khaitan and Frank Wolfs helped in Phase I

John Anderson, Michael Oberling, ANL Low Energy Technical Support (LETS).

Michael Carpenter, group leader of Low Energy Research at the ANL Physics Division.

Consultant: Eryk Druszkiewicz

Interns and coop students:

Mandy Nevins, Jeffrey Sylor, Dinesh Anand Bashkaran, Brian Kroetz, Vedant Karia, Edmond Tan, Soner Seckiner

Special thanks to Michelle Shinn and Manouchehr Farkhondeh

