

HOM Absorber Design for eRHIC ERL Cavity (Now EIC)

SBIR Grant Award No. DE-SC0018466

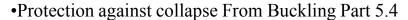
T. Schultheiss
TJS Technologies LLC
tjstechnologies@outlook.com
2022 SBIR STTR Exchange Meeting
Aug 23-25, 2022

Outline

- TJS Technologies LLC (2016)
 - Engineering Services
 - MSU Michigan State University
 - FRIB ASME evaluation of 644 MHz Cavity and Tuner
 - FHI Fritz Harbor Institute ongoing
 - Free Electron Laser Deflector Cavity
 - » RF Thermal Analysis Design, Coupling
 - » Beam dump and beam dump window
 - JLAB ongoing
 - SRF Cavity Cooled by Cryocoolers Thermal Analysis
 - FPC Coupling to Locate the FPC nearer the cavity (450kW per FPC)
 - Coaxial FPC Evaluation RF/Thermal Analysis
 - Higher Order Mode Absorber SBIR Phase I & II
 - Fabricated Prototypes
 - Waveguide planned low power RF testing
 - Beamline planned high power RF testing
 - Phase IIA
 - Tasks
 - Evaluate HOM absorber for Crab Cavity

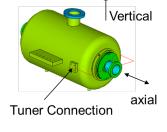
Engineering Service MSU

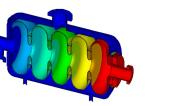
ASME Structural evaluation of FRIB 644 MHz Cavity and Tuner

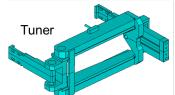

- •General Requirements of ASME code Section VIII Division 2 Design by Analysis
- •Material Properties
- Boundary Conditions
- Loads to be Considered
- •Design By Analysis 2015 Section VIII, Division 2 Part 5 of ASME Code
 - •Protection Against Plastic collapse Part 5.2

»Limit Load Analysis Part 5.2.3

»Elastic-Plastic Analysis Part 5.2.4

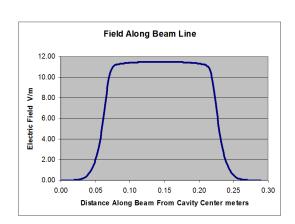

•Protection Against Local failure Part 5.3


»Elastic Analysis 5.3.2

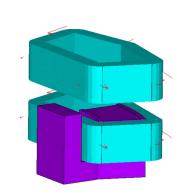


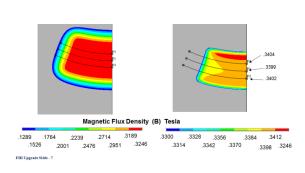
-Bifurcation - Eigenvalue Buckling Part 5.4.1.2

- •Protection Against Failure From Cyclic Loading Part 5.5
 - -Experience with comparable equipment operating under similar conditions Part 5.5.2
 - -Ratcheting Assessment Elastic-Plastic Stress Analysis Part 5.5.7
- •Vibration
- •Frequency Sensitivity to Pressure
- •Tuner Evaluation

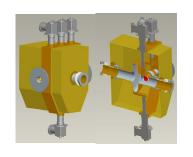


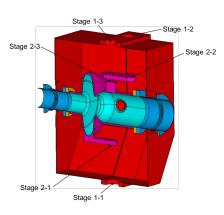
Engineering Service FHI


Develop a Beam Deflector to Provide 2 500 MHz Beams from a single 1 GHz beam for 2 Color FEL


RF Analysis

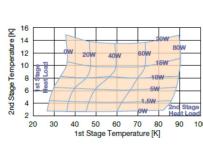
Electric Field Along Beamline

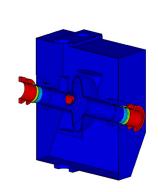

3-D Magnet calcs Coil geometry Specification Field Quality

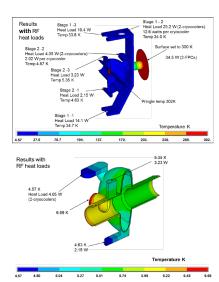


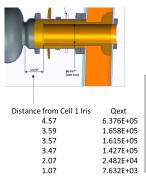
Thermal Analysis

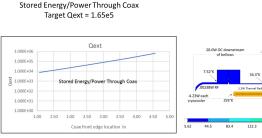
Magnet Analysis


Engineering Service JLAB






Cryocooler Capacity Map


RF and Thermal Analysis and Side Coupling for power couplers

RF and Thermal Analysis Beam Pipe Coaxial Power Coupling

Higher Order Mode Absorber SBIR

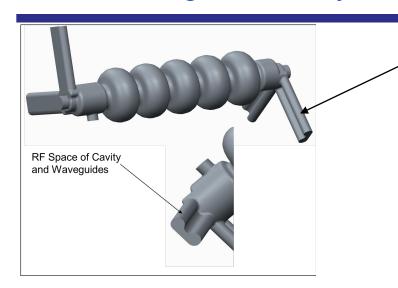
Motivation

- In 2017 and 2018 BNL evaluated designs for the electron accelerator in eRHIC, now EIC, the proposed electron-ion collider
 - It included electron cooling using a multi-cell cavity with high average current and high bunch charge in CW energy recovery mode. This cavity would require a higher order mode absorber with considerable power absorption capability
 - There is also interest in Crab Cavity HOM absorbers

Higher Order Mode Absorber SBIR Tasks

Phase I

- Define/update HOM specifications with BNL
- Develop the concept design of the absorber module
- Perform RF/Thermal and Structural Analysis of the HOM module
- Develop manufacturing plan and design for the HOM absorber module to a cost level.

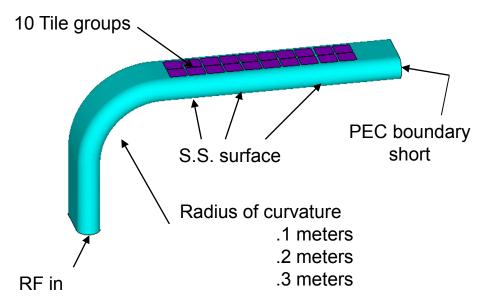

Phase II

- Manufacture Prototypes
 - Waveguide HOM
 - Beamline HOM

Phase II A

- Develop low weight waveguide HOM absorber Crab Cavity?
- RF sweep tests of waveguide prototype to determine S11 of HOMs
- High Power absorption tests of tile/backer cores

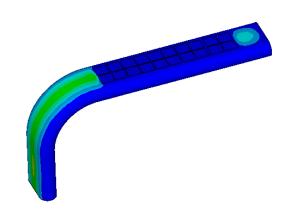
BNL Designed Cavity and B-shaped waveguide Phase I

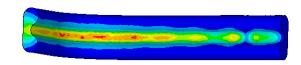

Input Excitation Port

Frequency Dependent permittivity and Loss tangent

Surface Losses assuming Stainless Steel

Output
S11, Power for each tile group
For each Frequency
Sum Power for each tile group over HOM
frequencies


BNL developed a B-Shaped waveguide to suppress multi-pacting and improve impedance, decreasing the number of waveguides per cavity
BNL paper SRF2017 TUPB002

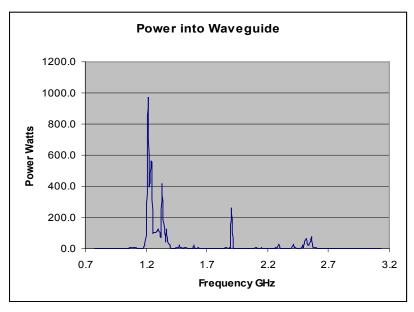


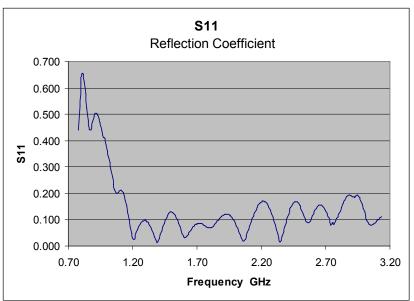
Tile groups with varying thickness Made from SC-35, graphite loaded Silicon Carbide

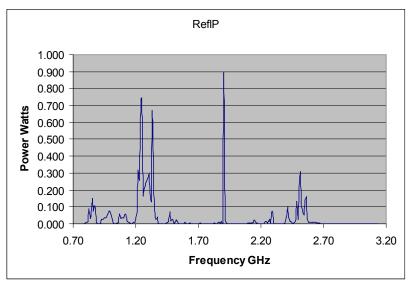
Fields at 1.2197 GHz Curved Waveguide Radius .1 meters

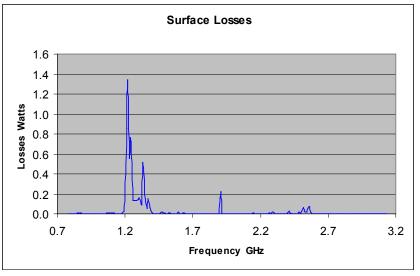
Power 241.6 Watts (966.5/4) S11 .0363 RefIP .319 W

Tabulate Results for all evaluated HOMs 4 HOMs per cavity

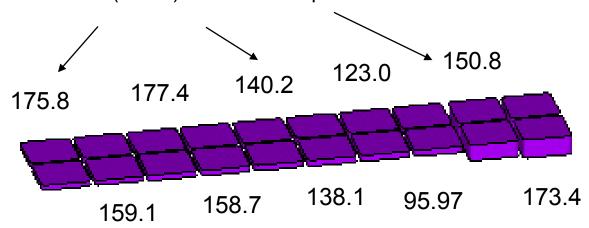

Freq	Power	S11	RefIP	Surf Loads	ld1	ld2	LD3
1.21974E+09	2.41637E+02	3.63340E-02	3.18999E-01	1.34287E+00	2.05640E+01	2.10396E+01	2.38696E+01
1.21036E+09	1.52642E+02	2.50770E-02	9.59898E-02	8.57093E-01	1.29309E+01	1.27258E+01	1.45691E+01
1.23850E+09	1.40402E+02	6.30190E-02	5.57593E-01	7.64159E-01	1.22239E+01	1.29842E+01	1.51182E+01
1.24789E+09	1.33295E+02	7.37400E-02	7.24802E-01	7.18159E-01	1.18679E+01	1.25528E+01	1.50519E+01
1.33233E+09	1.03705E+02	8.02920E-02	6.68568E-01	5.16512E-01	1.37696E+01	1.05113E+01	1.55004E+01
1.22912E+09	1.02832E+02	5.03010E-02	2.60185E-01	5.65519E-01	8.82375E+00	9.26745E+00	1.05817E+01
1.90467E+09	6.51005E+01	1.17180E-01	8.93905E-01	2.25240E-01	1.63844E+01	1.32115E+01	8.47076E+00
1.34171E+09	5.33818E+01	7.12660E-02	2.71118E-01	2.63818E-01	7.34672E+00	5.55251E+00	8.01851E+00
1.30418E+09	3.16275E+01	9.60880E-02	2.92014E-01	1.61430E-01	3.66959E+00	3.07313E+00	4.51124E+00
1.20097E+09	3.15965E+01	2.84580E-02	2.55887E-02	1.79180E-01	2.66583E+00	2.49959E+00	2.93756E+00
1.35110E+09	3.13223E+01	6.06370E-02	1.15167E-01	1.53636E-01	4.44486E+00	3.36306E+00	4.70684E+00
1.36986E+09	3.09785E+01	3.57750E-02	3.96479E-02	1.49785E-01	4.60074E+00	3.59557E+00	4.60617E+00
1.29480E+09	2.82145E+01	9.73070E-02	2.67153E-01	1.45229E-01	3.11195E+00	2.72818E+00	3.91699E+00
1.28542E+09	2.63835E+01	9.65040E-02	2.45710E-01	1.36982E-01	2.76559E+00	2.54465E+00	3.54499E+00
1.27603E+09	2.62213E+01	9.37260E-02	2.30342E-01	1.37344E-01	2.61716E+00	2.52373E+00	3.39182E+00
1.26665E+09	2.55163E+01	8.90190E-02	2.02201E-01	1.34870E-01	2.43513E+00	2.44740E+00	3.16344E+00
1.25727E+09	2.49354E+01	8.23760E-02	1.69206E-01	1.33040E-01	2.28961E+00	2.37570E+00	2.95315E+00
1.31357E+09	2.27740E+01	9.28180E-02	1.96202E-01	1.15280E-01	2.77424E+00	2.23229E+00	3.31811E+00
2.56145E+09	1.94891E+01	8.87690E-02	1.53573E-01	7.36090E-02	3.76744E+00	3.24892E+00	2.35598E+00


Surface Loss 1.34 W SS surface elec cond

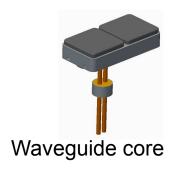

Electric Field V/m


0.0 1780. 3561. 5341. 7121. 8902. 10682. 12462. 14243. 16023.

Power In, S11, Reflected Power, Surface Loss



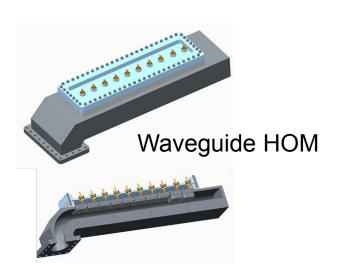
Sum of Power into Waveguide Absorber

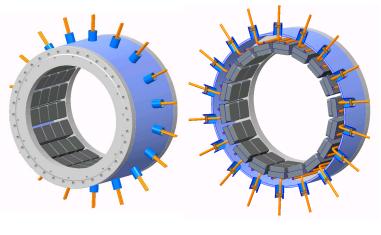

Power (Watts) into each tile pair

- Initial HOM absorber module geometry (4 HOM Absorbers per cavity)
 - 1492.4 W of 1501.5 W is absorbed 99.7%
 - 10 tile pairs
 - Thickness range .200" to .7

Higher Order Mode Absorber SBIR Phase II

- Manufacture HOM Cores
 - Can be used for Waveguide or Beamline Absorber



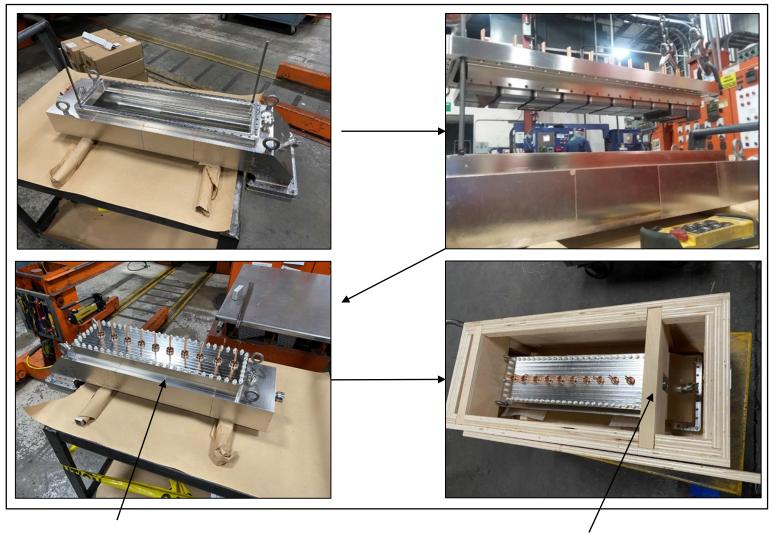


Beamline core

Manufacture Housing and Assemble Core and Housing

Beamline HOM

Initial Braze Step in Fabrication of Cores


Backer/Cooling Tube Assemblies (without SiC tiles)

SiC tiles

Backer-Tile Assemblies shown after joining

First Waveguide HOM Prototype

Lowering tile/backer flange assembly into housing

Bolt Flange assembly to housing

Inserting and restraining in crate

First Beamline HOM Prototype

Partially Assembled

Lowering into crate

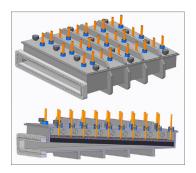
Fully Assembled

Used BNL
design for
thickness and
depth of SiC
and HOM
diameter, direct
replacement in
their test set-up

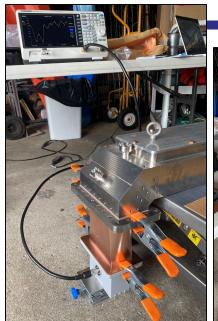
Higher Order Mode Absorber Phase IIA

Low Power RF Tests

- Waveguide Assembly S11 vs Frequency
- Compare to Analysis
- Evaluate RF Properties


Power Absorption Tests at BNL

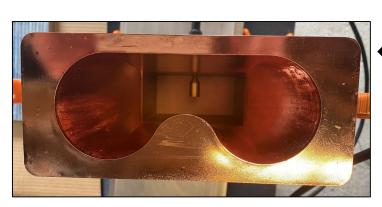
- Tile/Backer Assembly
- RF Power in
- Measure Temperature



Develop Low Weight Design

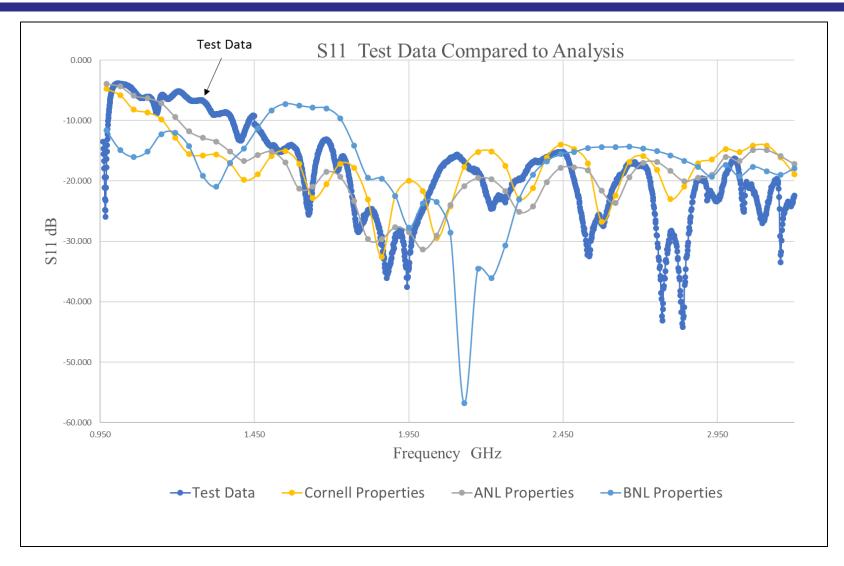
- Decrease weight of Tile/Backer Assembly
 - Decrease Backer Thickness
- Decrease weight of Housing
 - For Crab Cavity HOM Absorber
 - Minimize wall thickness meeting pressure vessel code

Phase IIA Waveguide HOM RF Sweep Test



Test With Flush Dummy Insert

Test With HOM Load Assembly



← Adapter-to-Transition Assembly

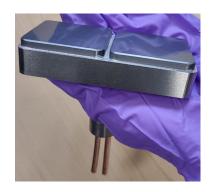
Through Measurement of Two Adapter/Transitions → (WR770 – WR510)

Phase IIA Core RF Absorption Test Set-up

Phase IIA Power Absorption Tests at BNL

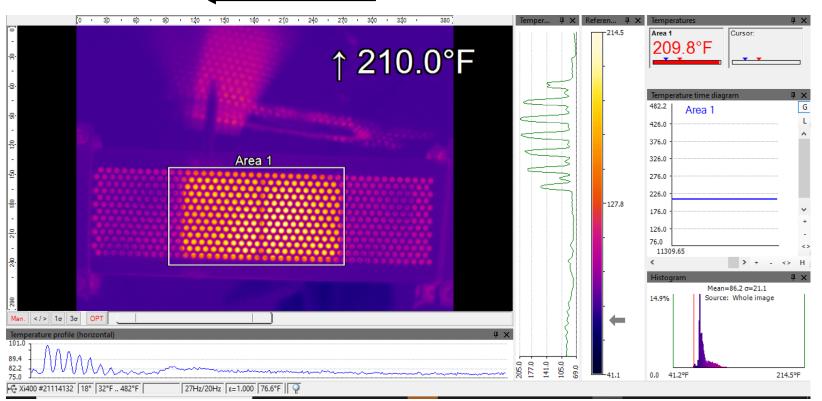
A Optris Xi 400 thermal camera replacement was installed. The entire stand was raised to make installation of test pieces easier.

Camera


Test Piece

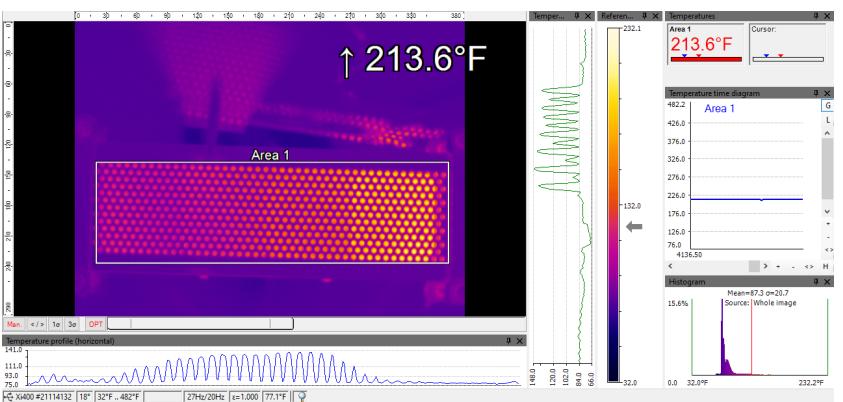
Chiller

Tuners


Thermal Image 2-Tile

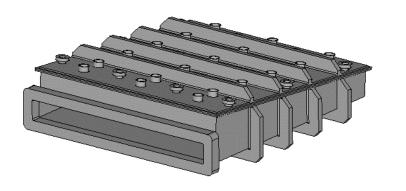
.200" thick tiles at 1010 Watts

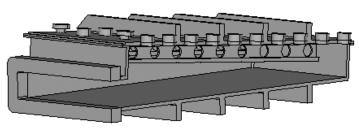
RF Power


Thermal Image 4-Tile

.550" thick tiles at 962 Watts 4-Tile assembly

RF Power




Develop Low Weight Design

- Tile/Backer Assembly
 - Copper cooling tubes and Backer material
 - Mismatch of CTE
 - Must have flat surface for joining tiles
 - Joining tests to determine minimum thickness

- Minimize Housing Wall Thickness
 - Perform Pressure Vessel Code analysis
 - Crab Cavity HOM expected to be part of Hermetic string

SBIR Summary

- Fabricated waveguide and Beamline HOM Absorbers
- Evaluating HOM absorber for Crab Cavity
 - HOM freq to absorb > 300 MHz
 - Evaluating RF properties of Absorber material at Freq < 1 GHz
- Developing Lightweight waveguide housing and Backer designs
- Beampipe absorber diameter can be accommodated by varying number of cores circumferentially
- Using HOM core can develop many geometries to accomplish HOM absorption
- 2-Tile and 4-Tile cores absorb a minimum of 1 kW of energy each
- Present Crab Cavity Design will absorb minimum of 30 kW
- Thank You
 - Michelle, BNL, JLAB, DOE