

US DoE-Topic # 29D: Low-cost, conformal, and efficient thermoelectric modules for on-detector electronics cooling

Office of Science

2022 SBIR STTR Exchange Meeting

Date: Aug 23 – 25, 2022

Contract#: DE-SC0019552

Program Manager: Michelle Shinn, Ph.D. (Email: Michelle.Shinn@science.doe.gov)

Nanohmics Inc.: PI: Giri Joshi (email: gjoshi@nanohmics.com) Steve Savoy, Rey Guzman, Andrew Foley, Roger Wood

University of Virginia:

Mona Zebarjadi , Department of Electrical and Computer Engineering and Department of Materials Science and Engineering

> Capstan Technology: Robert Pearsall, Scott Smith

Acknowledgement

• Program Managers:

Michelle Shinn, PhD, DoE

Manouchehr Farkhondeh, PhD, DoE

• Collaborators/Consultants

Mona Zebarjadi, PhD, University of Virginia Drew Weisenberger, PhD, JLab Robert Pearsall, Capstan Technologies

Overview

- Introduction to Nanohmics
- Technology background
- High-level vision for large-area, conformal TECs
- Program objectives
- Conformal TEC applications
- **D** Summary

CONVERSION Materials Electro-optics Energy conversion SENSING Technologies Biomolecular Transducer materials MEASUREMENT Instrumentation Computational Imaging

APPLIED SCIENCE

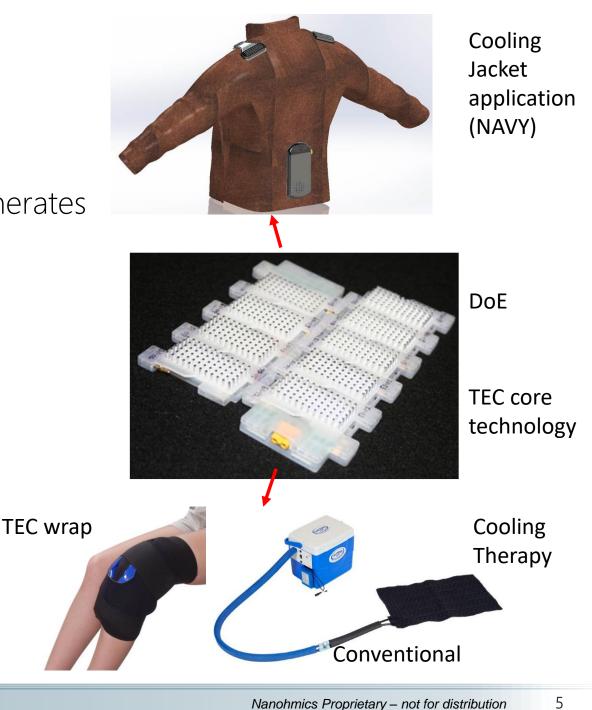
-Sensor/transducer materials -Electromagnetic · Wavefront -Molecular/Inks · Material interfaces -Energy conversion · Heat/Emission -Computational science/Al

INNOVATIVE ENGINEERING SYSTEM SOLUTIONS

- -Microfabrication · Electronics -Vacuum deposition · Coatings
- -Embedded systems · Layout
- -Sensors \cdot Component integration
- -Mechanical \cdot Industrial design

Thermal control · Electrodynamics
-Electro-optics · Electrical engineering
-Mechanical design · Control Systems
-Prototype · Low volume production
-Real-time computational imaging

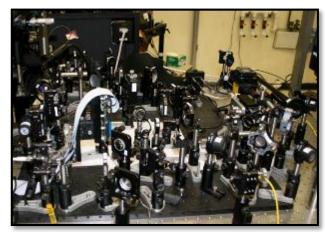
Founded: Austin, TX 2002 Staff: 46 technical



Facility: 13,500 sq.ft. industrial lab/flex R&D: Industrial Sensors, Smart instrumentation

Nanohmics Company Capabilities


- Thermoelectric Devices
 - Cooling: current drives heat
 - Power Generation: temperature gradient generates current
- Capabilities
 - Materials fabrication and characterization
 - Device design and simulation
 - Thermoelectric device and systems fabrication and characterization
 - Cooling and power generation applications
- Products under development
 - Large-area and conformal TE cooling device (DoE)
 - Thermoelectrically-cooled Jacket (NAVY)
 - TEC Knee Therapy Wrap (IRAD)



Nanohmics Company Capabilities

Instrumentation Development

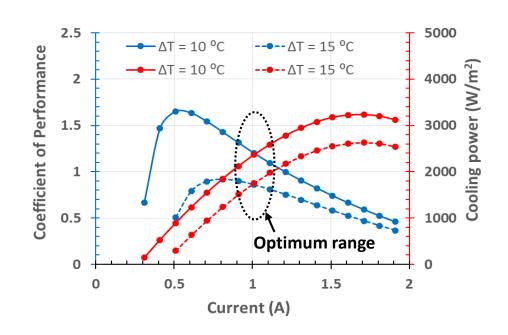
- Capabilities
 - Optical spectroscopy
 - Low-noise electronics
 - Digital signal/image processing
 - Real-time computational imaging
 - Precision measurements
 - Rapid full-custom prototyping
- Advanced products
 - Zowave[™] passive wavefront correction (Several in field, LRIP w/ a prime)
 - ECISTM water toxicity sensor (100+ units delivered and in use, active IDIQ)
 - GlideLine[™] parachute navigation system (sold entire product division)



Program Overview

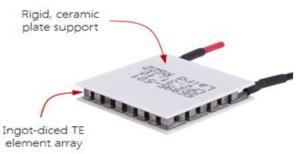
- Program: DoE-SBIR Phase-II program, 30 months (NCE)
- Participants: Nanohmics (lead), University of Virginia
- Consultant: Capstan Technology, Jefferson Lab

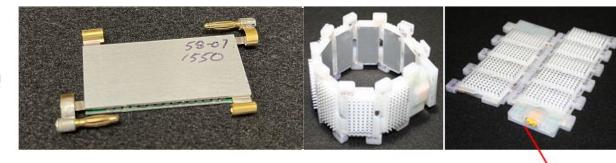
• Program goals:


- Design and fabricate efficient, low-cost and conformal TEC systems for on-detector electronics cooling
- Enhance COP of TEC
- Fabricate 6" x 18" conformal TEC
- Construct cooling system for on-detector electronics

- Low-profile
- Large-area

- Conformal
- Low-Cost




Concept Overview

(A) Commercial thermoelectric cooler

(B) Nanohmics' conformal thermoelectric cooler technology

NOHMICS

(C) Conformal TEC cooling system for RHIC on-detector electronics TEC integrated shroud **RICH** detector and electronics **TEC** devices Shroud Metal heat absorber TEC modular unit E-Panel PCBAs (Adapter, ASIC, FPGA)

Technology Innovation:

Nanohmics designed and fabricated conformal TEC devices to cool ondetector electronics and maintain a temperature below 20 °C during Phase I

Limitations of Commercial Thermoelectric Coolers

- Thermoelectric (TE) devices are used in hundreds of cooling products
- TE devices have been manufactured the same way since the late 80s
- TE devices fabricated on ceramic plates are expensive (>\$500/sq.ft. equivalent)

Commercial TE device

- Commercial TE devices require:
 - "tiling" and "fixturing" for large area cooling

letallized TE material "elements

TE material ingots

OHMICS

- application-specific connectivity and heat exchanger designs
- application-specific system integration w/ controllers and power supplies

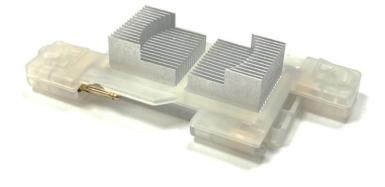
Metallized pads on cerami

Food & beverage Leader: Igloo Cost: \$150-400

Enclosure cooling Leader: Grainger Cost: \$700-3500

Biotech/Medical Leader: Thermo Fisher Cost: \$3000-15000

Wearable cooling Leader: Sony Cost: \$150-250


Technology Innovation: Modular Thermoelectric System - Thermolynx

–Modularity provides large-area, high-efficiency thermal management solutions as required for on-detector electronics cooling

- $-\Delta T$ =71°C measured at $T_{ambient}$ = 25°C, higher compared to Commercial TE
- CoP >2 with cooling power > 0.75 W/cm² (T_{ambient} = 25°C, Δ T=10°C)- **Milestone achieved**

- -Adaptable sizing and flexibility meets new application requirements
- -Designed for rapid prototyping w/ integrated heat exchangers
- -Low-profile is configured for wearable/textile comfort
- -Low-cost manufacturing process (\$199/sq.ft.)

Module weight – 20 g

ThermoLynx-Powered Commercial Applications

ENTRY PRODUCTS

- -Wearable PPE (welding, first responders, soldiers, clean room)
- -Wearable medical (ambulatory cold therapy, cast-integration)
- -Cold chain/fixture thermal management
- -Enclosure air conditioning (wall/appliance-mounted)
- -Portable and battery-powered food & beverage
- –Scientific and biotech thermal cycling/precision thermal control
 –Consumer comfort cooling

PPE ENVIRONMENT COOLING

EV BATTERY MANAGEMENT

5G ERA COMM COOLING

MODULAR TE PROVIDES LARGE-AREA, HIGH THERMAL INTERFACE CONTACT, PROGRAMMABLE COLD MANAGEMENT

Low-profile heat rejection fan

THERAPEUTIC/MEDICAL WEARABLES

Phase II Technical Objectives

Technical Objective 1: Design and fabrication of high-ZT thermoelectric modules

Technical Objective 2: Performance demonstration of fully-operational modular assemblies (TE alpha prototype)

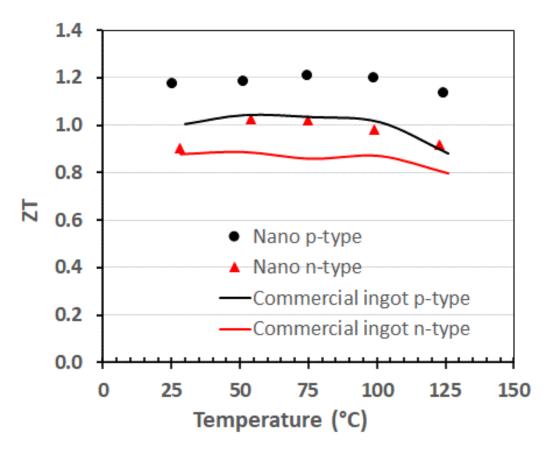
Technical Objective 3: Design and proof-of-concept demonstration of a modular TE system for on-detector electronics cooling

Phase II program work plan

Program Objective: Low-cost, efficient and conformal TEC fabrication with CoP>1.5 for Δ T~10°C cooling of on-detector electronics

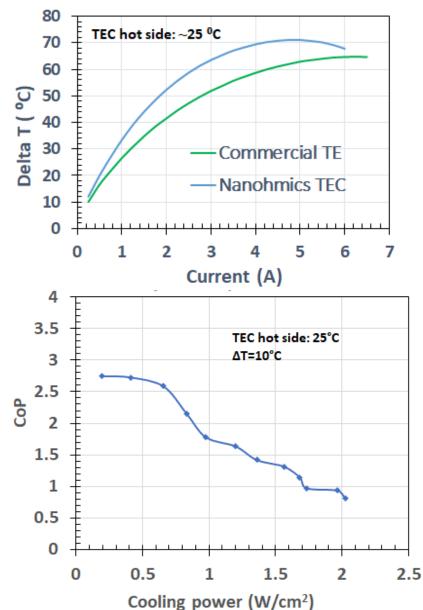
Impact: Enable detector to maintain a temperature below 20 – 25 °C

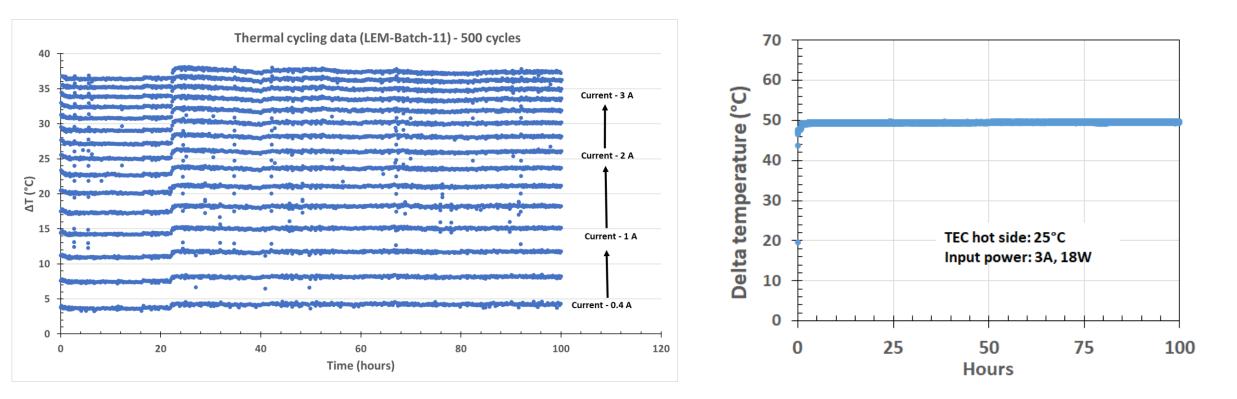
Phase II goal: Demonstrate cooling performance of a 6" x 18" conformal TEC prototype device and cooling system for detector's electronics


Team capabilities: Extensive TEC design, fabrication, and commercialization experience. Flexible/stretchable medical sensor technology development experience.

TECHNICAL OBJECTIVE Work Plan Tasks	Milestone	SBIR F 2					PERI 12		20	22	24	26	28	30
1 Program kick-off with sponsor														
Establish, analyze, and document system requiremnts	Kick-off meeting; specification slides													
2 Optimization of high-ZT thermoelectric materials														
Synthesize TE materilas	Fix TE compositions of p- and n-type													
Optimize TE composition and process	with ZT around 1.0													
3 TE consolidation across fiberglass and electrode development														
Consolidate TE materials across fiberglass	6" wide metallized TE element array													
Develop contact materials	across fiberglass with ZT around 1.0													
Characterize and optimize metallization layer	and contact resistance < 10 $\mu\Omega$ -cm ²													
4 Concept demonstration unit developments and optimization								_		_				
Optimize dielectric and thermal spreader materials	Fabrication of 6" wide row module													
Design and assemble TEC unit	with cooling performance													
Characterize the CDU unit	demonstration													
5 Heat exchanger design and component fabrication														
Design and simulate hot side heat exchangers	Fabrication of optimized heat													
Fabricate mechanical components	exchanger for TEC hot side													
6 Fabrication of alpha-prototype conformal TEC System														
Design and fabricate alpha-prototype TEC	Fabrication of 6" x 18" conformal TEC													
Optimize materials and components	system													
Design and fabricate electrical components	System													
7 Alpha unit performance demonstartion														
Characterize alpha-prototype TEC	Full third party validated alpha-													
Validate performance by third party	prototype cooling performance													
8 Beta design of on-detector electronics TEC cooling system														
Design on-detector electronics TEC cooling system	Fabrication of on-detector electronics													
Optimize materilas and components	TEC cooling system													
9 Volume manufacturing process design														
Design TEC volume manufacturing components	Detail low-cost roll process TEC													
Optimize TEC roll manufacturing for low-cost production	manufacturing plan													
Phase II deliverable: Phase II final report, fully characterized 6"	x 18" conformal TEC system, manufactu	ıring d	esign	doo	cum	enta	tion							

High-performance thermoelectric materials


- High performed TE materials synthesis
- Base compositions: Bi_{0.5}Sb_{1.5}Te₃ (p-type), Bi₂Te_{2.7}Se_{0.3} (n-type)
- Room temperature figure of merit (ZT): 1.2 (p-type), 0.9 (n-type)
- Better TE materials compared to commercial TE
- CoP proportional to ZT
- Targeted CoP ~ 2.0 with $\Delta T = 10 \ ^\circ C$


Cooling performance of *Thermolynx* modules

- 20mm x 41mm TEC
- CoP and cooling performance measured at $\Delta T = 10^{\circ}C$ and $T_{hot} = 25^{\circ}C$
- $\Delta T = 71^{\circ}C$ measured at $T_{ambient} = 25^{\circ}C$, higher compared to Commercial TE
- CoP >2 with cooling power > 0.75 W/cm^2
- Targeted cooling performance for room temp cooling applications such as on-detector electronics

Thermal stability data

• Thermolynx modules show robust mechanical and thermal stability for 500 cycles and 100 hours of continuous operation

Summary

- Nanohmics has developed low-cost, conformal, and efficient thermoelectric cooling modules (Thermolynx devices)
- Thermolynx devices are based on PCB substrates, and assembled using automatic and tape & reel-based manufacturing processes
- The Thermolynx devices are modular in structure, and amenable to a large-area cooling system using stretchable and mechanically-complaint electrical connectors
- A CoP ~ 2.0 and cooling power > 0.75 W/cm² measured for room temperature cooling applications (T_{hot} ~ 25 °C, ΔT = 10 °C) such as on-detector electronics cooling
- Thermolynx are robust, thermally-stable, and easily integrable into cooling systems
- Nanohmics' devices are ready to build the detector cooling system as well as any other cooling applications, any collaboration is welcome!

Thank You!.....Questions??

