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System Overview / Description

Motivation

Provide advanced, precise ion profiling beam analysis with results continuously displayed in real-time
Serve as a model for a related radiotherapy beam monitoring technology

Features

Novel-use thin scintillators: very high sensitivity, clean imaging, very low mass

Scintillators are insertable/retractable without breaking vacuum using a stepper-motor translation arm
Imaging detector: low noise, high resolution, high dynamic range camera
Lens system: fast large aperture optics for max light collection

Specs

~ 10 um position resolution

Fast detection algorithms quickly find weak beams

Updating false-color display in beam coordinate system

Analysis (location, RMS widths, amplitudes) updating continuously in real-time display at ~ 1 Hz

Wide dynamic range in beam current/pps over ~ 11 orders-of-magnitude, starting with single ions (at low energy)
Higher energy beams are transmissive

Linear to at least 5 orders-of-magnitude in beam current




SBM Configured as “Six-Way-Cross” (6WC with 3 orthogonal lines)
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Line 1: beam path (vacuum) fore/aft
Line 2: optical: light paths to camera top + alignment targets bottom

Line 3: scintillator ladder travel




ReA3 Scintillator Beam
Monitor (SBM)

Low-Cost Commercial Camera:

* megapixel CMOS sensor

 12-bit ADC

e gain: 0-24db

* noise ~ 1 ADC count (2.4 pe)

* Fast, large aperture, low f-stop lens

Remote controlled, stepper
motor actuated arm

/ Beam exit

Scintillator ladder

* Holds six 2x4 cm? scintillators

* moved in & out of beam by
translation arm

Placeholder for alignment target or 2"
photodetector: e.g., fast PMT for TOF
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Many 6 WC Beam Monitor Configurations — 3 of many other SBM designs shown below

Single Long Scintillator




Scintillators - Two types of thin, non-hygroscopic & radiation damage resistant, novel materials

Type 1:

Type 2:

Polymer Material (PM): a semicrystalline, organic plastic polymer:

superior physical properties: tough, thin to ultra-thin, can cover large areas

high light emittance

observed large amplitude signals compared to polyvinyltoluene (PVT) & polystyrene (PS) based plastic scintillators
semicrystalline = hazy appearance, no internal reflections, more light escapes the surfaces.

available in variety of thickness. We tested 1 um to 200 um.

thin films attractive for transmissive beam applications (e.g., continuous beam monitoring for NP & radiotherapy)
fast decay (< 30 ns)

Hybrid Material (HM): a polycrystalline inorganic-polymer hybrid:

HM scintillator layer is a matrix deposited on a support substrate

available in large area sizes & thinner than single crystal Csl(Tl), e.g., < 0.5 mm

very high light emittance — generates order-of-magnitude |larger amplitude signals than Csl(Tl)
no internal reflection

decay timeis ~ 3 us

lIntegrated Sensors, LLC has 4 issued patents on these two new scintillator materials for beam monitoring applications.




Screen capture of display

DAQ System Functionality (beta version)

Loads text file of configuration parameters:
e pixel field range and spatial offsets
 frame exposure time
e acquisition mode (triggered or asynchronous)
e pixel binning
e ADCdigitization and gain factor
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Image processing in real-time:
* background subtraction
e faulty pixel removal
« affine (perspective) matrix transformations and rotations
for display in beam coordinate system
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Image analysis in real-time:
* beam finding
*  beam profiling (centroids, RMS widths)

« peak amplitude Shown above:

Display * beam false color
 color-coded beam image * 2D position history
* real-time analysis results in updating graphics e beam FWHM and radius
e updates at 1 Hz e 1D updating X,Y centroids

Data transfer to storage media for offline analysis * peak ADC and RMS



Test Results

Location Source Energy [MeV/n]
UM Physics Lab B (°°Sr) ~1
Michigan lon Beam Laboratory (MIBL) P 1-6
Facility for Rare Isotope Beams (FRIB) 86| [+26 2.75

Notre Dame Radiation Laboratory (NDRL) e 8



UM Lab Test of Scintillators Part 1: Compare HM to Csl(TIl) single crystal

scintillator

glass window

1 s exposure

unity gain

20Sr source (2.4 mCi)
3 mm bore

Camera + lens
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UM Lab Test of Scintillators Part 1: Compare HM to CsI(TIl) single crystal
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UM Lab Test of Scintillators Part 2: PM vs BC-400

~200 um thick + 2°Sr beta source (~3 mm FWHM) + 1 s exposures + 24 dB pixel gain
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Result at 24 db gain

BC-400 (PVT based):
image more sparse hit distribution,
weak signal.

PM:
Clean image with well delineated source,
robust signal above background.

Mean Ratio of PM/BC-400 is ~5X
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12



Facility for Rare Isotope Beams (E. Lansing, MI) (ReAccelerated 3 MeV Beamline)

Project objective: provide FRIB with advanced & fast beam monitoring.
Estimated beam time cost ~ S20K/hr = high premium for fast tuning

* lon: 8Kr*26 at 2.75 MeV/n
* Currents 520,000 pps to < 10 pps
 Beam shaped by collimating plates, quadrupoles

Selected results:

1. PM scintillators
e Beam profile and signal amplitude vs thickness, current
* Beam transmission

2. HM type scintillator:
* Single particle detection
* Response vs beam current
e Beam tracking & profiling
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Signal & Beam Imaging in PM: (Beam current = 520,000 pps)

Similar profiles for 191 to 75 um thickness; particle penetration depth ~38 um
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Signal & Beam Imaging in PM: “Beam Transmission” (Beam current = 520,000 pps)
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Signal & Beam Imaging in HM: “Single Particle” hits/images

Beam current ramped down to < 10 Hz
Individual 8Kr hits observed in 1 s frames

Lego representation
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Measured Rate [pps]
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Beam Current in HM Scintillator: Measured Rate vs. FRIB “Given” Rate

x2 / ndf 2.702/3
Prob 0.44
pO0 —-1.451+2.445
p1 0.8754 £ 0.08346

10 10° 10° 10* 10°
FRIB Rate [pps]

Result 1:

The SBM can measure beam currents that are now
determined by 4 different FRIB devices:

e Faraday Cup

e MCP detector

e Silicon detector

e Calibrated Beam Attenuator

Result 2:

SBM measurement is linear over more than 5 orders-
of-magnitude (the full range has not been determined)
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Beam Finding, Profile Analysis & Real-Time Display

Conditions:

1)
2)
3)
4)
5)

Beam current 50 pps — very low rate.

Beam width — few mm

Beam moved by operator in square pattern in the beam pipe
HM type scintillator

1 s frames



Full pixel field

X position history

Beam finder

Y position history

Beam radius history

X,Y history
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Beam Image on HM at NDRL (camera coordinates)

Single 2 ns duration pulse (1.9 Gy) at a peak current of 1 amp
Peak dose rate = 950 MGy/s

8 MeV electrons

pixels ¥

100 200 300 400 500 60O 700 ' 1
pixels X
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PM Radiation Exposure in Vacuum at Very High Dose Rates

=>» No degradation was observed in PM type for FLASH doses in air
for ~ 9 kGy total dose, at rate of 10 Gy/s

=>» However, in vacuum for much higher dose rates of ~ 300 Gy/s

=>» (i.e., ~30 times higher dose) some degradation was measured. @ 1,05 . _
. . 0 = - PM signal loss at high dose rate
Specifically, the average signal change/drop was -0.6 * 0.1 %/kGy = - 4i
averaged over a 20 kGy cumulative dose. 9 - measured in vacuum
©
* This degradation largely recovers over several hours in air & -
0.95(
PM signal loss/recovery measured in air i
@ I 0.9
o n
5 -
210 0.85|
s :
T L L e i itlti L i -
5.4 MeV protons B
L PM 191Hm,28ka D.B_rlllllllllllllllllllIIIIIIIIIIIIIIIl\I\l

0 2 4 6 8 10 12 14 16 18 20

—a— PM  12um, 22.9 kGy Cummulative Dose [kGy]

PM 6 um, 23.9 kGy
—40 —>— PM 3 um, 44.2 kGy
—+— EJ260 200 um, 26.9 kGy
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Conclusions / Summary

1) SBM provides precise beam profile & imaging with spatial resolution < 10 um

2) Real-time analysis allows for rapid (i.e., real-time) beam tuning

3) Beam detection at very low rates starting at single-particles

4) Data from FRIB: linear to more than 5 orders-of-magnitude for 8Kr+2° (e.g., single-particles to ion-beam current of 5x10° pps)
Data from MIBL: imaging of 10 nA proton beams to 5x10° pps/cm? (not shown here)
Data from NDRL: imaging of 8 MeV pulsed electron beams to 4x10!! pps/cm?

5) Novel applications of two specialized thin scintillator materials
e PM: thin to ultra-thin materials produce clean imaging and accurate profiling
* PM in air at rates of O(10) Gy/s = no degradation over first 9 kGy
 PMin vacuum at 100-300 Gy/s = about 0.6% signal loss/kGy over first 20 kGy
e Ultra-thin PM tested: from ~ 1- 200 um sample thickness
 HM in air at rates of O(10) Gy/s = no degradation over first 15 kGy
 HM: order-of-magnitude higher signal output than much thicker Csl(Tl) standard
- allows for new unprecedented sensitivity at FRIB

“...[we] tested them yesterday with Fe at 1000 MeV/n. HM gave about 50% output compared to the [thick fluorescing]
screen. It is remarkable for such a thin scintillator! | have tried this before with other scintillators and was not able to
see any light from them.” ...BNL/NASA Space Radiation Lab

6) 6WC design operates in high vacuum (or in air)
7) Scintillators can be remotely inserted in beam or changed without breaking vacuum.
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Signal & Beam Imaging in PM: (Reduced beam current 100X to 4.9 kHz)

Full field-of-view Beam detail
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Result 1: Clean beam profile is imaged. ADC signals well above noise

Result 2: Another ~5x reduction is possible ==> 1 kHz beam currents detectable
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Beam Current: Simple Measurement in HM Scintillator

1. Integrate single particle hits to extract signal/particle. Particle light yield vs area of hit pixels

Photoelectrons per Particle (Total)

Photoelectrons

%2 I ndf 4.073/6
Prob 0.6668
po 341.5 + 3.197

400 500
Area [pixels2]

2. Plateau value = single particle total light yield.
(set by the range of the point spread function & light

spread in scintillator).

3. This normalization gives the beam particle current.

o l. IIl amll 1 - | | | e IIl . 1x =8 " .l. B l. r
440 460 480 500 520 540 _ ,
pixels H ==> Result is number of particles/s
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Comparison of HM to Csl(Tl) at Very Low Beam Current = 50 pps

Full Field-of-View

10?

600 800 1000 1200 1400 1600
Pixels X

Pixels Y

A AR -
400 600 800 1000 1200 1400 1600
Pixels X

10?

10

Zoomed-ln Image

B~ Source using %Sr in lab
Camera gain =24 db

Exposure=1s

Result:

HM beam image is:

Easily visualized
Qualitatively superior to Csl(Tl)

Order-of-magnitude stronger signal

Gl

" e

Pixels X
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Selected Results from Notre Dame Radiation Laboratory (NDRL)

e Evaluated SBM beam imaging using intense beam of 8 MeV electrons

* Excellent signal quality at FLASH radiotherapy (RT) dose/pulse magnitude
i.e., we operated at ~1 amp/pulse (i.e., 1.9 Gy/pulse), which is ~ twice the minimum for FLASH-RT
assuming at least 21 pulses delivered in 1 s pulse. Pulse duration was 2 ns.

* Response linearity with beam current demonstrated for PM and HM scintillators
e Evaluated radiation tolerance of PM and HM at FLASH-RT exposures

e Absolute calibrations were obtained using Gafchromic film standards



|.  Setup at NDRL
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PEs

Signal Strength vs. Beam Current (8 MeV electrons, NDRL data)
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Relative Light Output

Radiation Degradation Experiment for PM (in air), 191 um thickness

Three runs total dose = 9 kGy total dose (in air)
No observed degradation
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Radiation Degradation Experiment for HM (in air)
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HM response to FLASH dose 1.9 Gy/pulse
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Stable: RMS variation ~ +/- 0.4%
No observed degradation trend over 15 kGy

Degradation limit < 0.03% /kGy (in air)
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80 [ 2/ ndf 16.93 /12
[ Prob 0.1524

70? }

60 ; Sigma  0.003877 =0.000155

50—
a0
30

20—

AT

096 098 1 1.02 1.04 1.06 1.08
relative light yield

31



100

Light Output

Signal region

300 400 500 600 700

Radiation Degradation Experiment for HM
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* Run duration =30 min

1.9 Gy/pulse at 5 Hz

e Average dose rate (1s) =9 Gy/s

e 15 kGy total dose

* Metric = signal ratio high dose region/control region
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High Current Beam on PM Scintillator (Michigan lon Beam Lab)

200 >
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pixels X pixels X

pencil beam at 2 kHz sweep rate
exposure =10 ms

5.4 MeV protons (E,,, = 2.1 MeV)
10 nA

exposure=1s

1 MeV protons (E, = 0.046 MeV)
3 nA
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