S e e b e e T1te e des sie s Dl e
Sy Rl i o S R

High Performance FPGA-Based Embedded System for
Decision Making in Scientific Environment

Supported by DOE grant DE-SC0019518
Phase I: 2019 - 2020, Phase 11 2020 - 2023

Yu Sun, Pl
CEO of Sunrise Technology Inc.

yu.sun@sunriseaitech.com
DOE SBIR NP Exchange Meeting, August/23/2022

@Sunrise Technology Inc. All Rights Reserved. 1



Outline

Company Introduction

Description of the Phase Il project
* QObjectives

®* Nuclear Physics Background

* Schedule and Deliverables

Project Highlights

* Trigger Algorithm Description

®* Performance Report

* Highlights of the final product

Conclusions, Future Plans and Milestones




About Sunrise Technology Inc.

* Founded in 2017

« Located in an incubator at Stony Brook
University, Brookhaven, NY

« Team: three full-time employees, a part-
time consulting scientist, and several
graduate interns.

» Developing advanced machine
learning/deep learning and Al technology
for autonomous systems, such as scientific
experiments decision-making engines
and education platforms.

* Product and Service areas

1) FPGA-enabled GNN Solutions

2) Embedded system for modeling training

3) Deep Reinforcement Learning for large facility control

Yu Sun CEO and Founder
Giorgian Borca-Tasciuc employee, Machine Learning Research,
FPGA implementation
Kevin Mahon employee, GNN Development, embedded system
| ingxiong Li Collaborator, Nuclear Physics Science Lead, LANL
“ameron Dean - i



Core Competencies
&

Potential Markets

Machine Learning and Deep Learning Algorithm
Design

Al/ML for Science Facilities

Data Science for Physics Analysis

Deep Reinforcement Learning for Orbit Control
Al-Enabled Heterogeneous Embedded systems
(with CPU, GPU, and FPGA) for Science Facilities
Automation (particularly accelerators detectors)

Edge Systems Software Stack




SBIR Phase Il Objectives

- Ultimate Goal

— Design an Al-enabled DAQ trigger system

— Integrated into sPhenix experiment and reaches the target of 15Khz data acquisition rate.
- Phase Il Technical Objectives

— Designing Graph Neural Networks for High-Speed Physics Event Triggers.

— Implementing High-Speed Triggers for Nuclear Physics Experiments.

— Creating a flexible embedded hybrid system to support training and inference.
- Phase Il Commercialization Objective

— Manufacture smart embedded hybrid system to facilitate real-time data collection in large
scale experiments and facility control



SBIR Phase Il Project Periods

4 )

Project Period May/2022-April/2023:

P;ole_ct Pe:od Apnl/hZ.OZO-Ap.rlI/ZOill: o Basic Algorlthr:lc Dev_elolprr_lent Advanced Algorithmic and Field Validate in sPhenix
.(Ija?:tlfy and Train Machine Learning Models with Inner-most MVTX detector simulation + Advanced ML-Algorithm Development with MVTX + INTT detector simulation data

« Improve model performance
» Reduce model inference latency
* Objective: 200K-500K events/second/FPGA card

« Verify the baseline Performance Accuracy and Throughput
* Preliminary Hardware Development on FPGA

&
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May 2021 — Apr. 2022

@
Apr. 2020 — Apr. 2021

May 2022 — Apr. 2023

Project Period May/2021-April/2022:

Advanced Algorithmic and FPGA Development

+ Advanced ML-Algorithm Development with MVTX + INTT detector simulation data
« Improve model performance

» Reduce model inference latency

*FPGA HLS development and deployment

* Objective: 100K-200K events/second



Relevance to DOE NP SBIR Program

®* Project Focus:
— Real-time Al technologies will be applied to the very high-rate data streams from detectors.

— Accelerate GNN on FPGA, one of the first work that attempts to accelerate GNN prediction.
— Play the central role in sPhenix and Future EIC detectors running under trigger systems and in-
situ streaming analysis for event selections.

®* Project Impacts:
— ASCR C55-01 (ACCELERATING THE DEPLOYMENT OF ADVANCED SOFTWARE TECHNOLOGIES ),

Subtopic a): Deployment of ASCR-Funded Software
— NP C55-21: Nuclear Physics Software and Data Management and subtopic
* b. Applications of Al/ML to Nuclear Physics
* ¢. Heterogeneous Concurrent Computing.
* Subcontractor/Collaborators
— Dr. Ming Xiong Liu, Dr. Cameron Dean, LANL
— Dr. Jin Huang, Dr. Zhaozhong Shi, BNL



The Readout Challenge for High Luminosity Physics

The readout challenge
e Raw data volume >> hardware bandwidth/storage
*  Only a small fraction of data will be recorded to tape

sPHENIX: DAQ trigger rate, 15kHz
*  AuAu collisions
Max collision rate ~50kHz
Can collect all central collisions, OK
* p+pandp+Au
. Collisions on each beam crossing, ~¥9.4MHz
. Okey for high energy jet program with triggers
Lose most of the low pT physics events
Al-based Triggering: filter events to reduce data rates for data archive and offline processing
sPhenix Trigger TPC (Time Projection Chamber) Data Acquisition

SBIR project focuses on designing, building, simulating, and benchmarking a prototype event
readout system with Al-based fast online data processing and autonomous detector control
system that meets the physics and engineering requirements.
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Event Data Descriptions

Moving from images to points
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Image-based methods face challenges scaling up to realistic
HL-LHC conditions.

High dimensionality (9K X9K x3 ) and sparsity
Irregular detector geometry

Instead of forcing the data into an image, use the space point
representation.

Harder to design models (variable-sized inputs/outputs)

1
* But now we can exploit the structure of the data with full precision \\
« What ML models are appropriate for the event S \
on right S

— Graph neural networks




Trigger Software Pipeline

1. Fetch events from Detector Readout (Use Simulation Data)

¢

2. Data Pre-processing Clustering
3. Tracking + Outlier hits Removal

4. Triggering Decision

5. Triggers on TPC (Interface and integration with sPhenix Detector)
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Graph Neural Networks
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Graph Tracking and Outlier Removal

o What if we structure our data as a graph of connected hits?

1000 -

o Connect plausibly-related hits using geometric constraints
800 A
o What kinds of models can we apply to this

representation?

— 600-
£
S N o Traditional architectures clearly don’t work

400 + ) . .

N\ \§$‘\ ARE? o but there's a growing sub-field of ML called Geometric Deep
7 w.ﬁl‘"‘\ {-, ’I;' 7 ; .
2001 \\‘1)“9‘?:?.-’3 Y LY Learning
S o Connect hits on adjacent layers using crude geometric
01, , . . , constraints, i.e., §(¢) < Zand §(z) < 300mm
-1000 =500 0 500 1000 4
Z [mm]

mm ] ]]

With each iteration, the model propagates information through the graph,

strengthens important connections, and weakens useless ones.



Trigger Detection Algorithm

* A GNN-based trigger system to decide whether to record the events or not, with the
processed track information retrieved from the captured 3D sparse images by the

sPHENIX detectors.

— Hits based algorithm: each graph node is a hit on detector and events are represented by a
collection of hit clouds. Graph Neural Network is simple to implement and has fast computation

time.

— Track based algorithm: each graph node is a track that represents a particle generated from
collision. Event consists of the tracks for particles. Graph Neural Network is hard to implement
but we can learn high-level physics knowledge to improve the trigger accuracy.
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Trigger Detection Network Architecture

 SEBA - set encoder with
Bipartite aggregator
 Readout Functions:
— Mean Pooling

Input —— °

— Max Pooling

Input Output

— Pool on the concatenation
) of node embedding from
SEBA Block_/ this GNN layer

Aggregators
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Physics-Aware Graph Neural Networks for trigger

* Each track represents the trace of a particle. Can we estimate some high-level
physics information, e.g., Particle Mass, Momentums, and particle ID?

* We demonstrate the physics-momentum guided GNN improves accuracy by
15~16% over those without it.

y

Pr = 0.3BR,where B is
the magnetic field strength

Fig. 3: The left figure shows that a positively charged particle will undergo a
circular motion clockwise with a radius R in the uniform magnetic field B along
the +2z direction. The right figure shows an example track with a fitted circle.
The black cross markers represent five hits on the example track; the red dashed
curve approximate a particle track and is the fitted circle with a radius R.

15



\_

Experiment Results

Table 2: Comparison to Baseline Models with Estimated Radius.

Table 5: Ablation Study of Activations

Activation Accuracy AUC
ReLU 90.74% 96.87%
Tanh 90.19% 96.58%
Potential 90.41% 96.75%
Softmax 92.18% 97.68%
b e

Fig.7: Accuracy performance in respect to hidden dimension for two/three-layer
models and different number of aggregators.

with LS-radius

N/

without radius

\

Model #Parameters Accuracy AUC #Parameters Accuracy AUC
Set Transformer 300,802 84.17% 90.61% 300,418 69.80% 76.25%
GarNet 284,210 90.14% 96.56% 284,066 75.06% 82.03%
PN+SAGPool 780,934 86.25% 92.91% 780,678 69.22% 77.18%
BGN-ST 355,042  92.18% 97.68% 354,786  76.45% 83.61%
Year 2022 - \_ Year 2021 Y



FPGA Implementation

hls4mlis a software package for creating HLS
h IS 4 m I implementations of neural networks.

https://hls-fpga-machine-learning.qgithub.io/hls4ml/

FPGA Performance

Keras
Te,;‘;}’;flﬁw - — Pipeline Stage | Number of Parameters | Accuracy | Kernel Time (us) | Speedup
A= % i S Clustering - 99.2% 85 1152x
Tracking 745 92.8% 23 280x
B Triggering 2441 68.1% 35 21X
- - s |_, Full Pipeline 3186 68.0% 140 750%
T Custom firmware
[/‘ design
tune configuration
precision

reuse/pipeline
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https://hls-fpga-machine-learning.github.io/hls4ml/

Deep Learning Training and Inference Product Hardware

Stage 1

Off-lin Stage 2: On-line Tr, . Stage 4: Light-Weight R Stage 5: Real-Time
.- [Transfer Learni Deep Learning & Inferen & Decision Making

Trainin

High Performance Computing Edge Computing Embedded System Controller

Electricity Cost High Electricity Cost Medium Electricity Cost Low

Al-Engine Board and

GPU servers High-end Embedded System Standalone Embedded System



Future Plan: Integrated into the sPHENIX Readout
Upgrade (DOE Project led by LANL)

Al-based real-time system: Fast Data Processing and Smart Trigger

- ldentify heavy quark events in p+p and p+Au collision events

~

sPHENIX Offline

simulation

9.4 MHz

MVTX (Si Pixels) H—

Online
INTT (Si Strips) H— buffer

|

I -

I Trigger signal Offline data
N

TPC processing

W,
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Conclusion, Accomplishments and Milestone

4.

Implement the Trigger Detection Algorithm based on advanced GNN
Implement Physics-aware pipeline for decision making

Extremely fast GNN algorithm on FPGA (3KHz/second for end-to-end pipeline), 20 times
faster than GPU (2021).

With the Support of HLS4ML, the trigger software runs on a server and embedded system
with FPGA (2022)

Year 2 milestones

Simulation Dataset with MVTX+INTT (1~5 million events) and retrained models (Done)
FPGA implementation for new models with MVTX and INTT (in Progress)
Fast prototype design for online triggering hardware (Done)

Design and implement embedded system with both training (on GPU) and inference (on
FPGA)

Year 3 milestones:

sPhenix trigger to be deployed for upcoming sPhenix experiment run at 2023.
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