

High Performance FPGA-Based Embedded System for Decision Making in Scientific Environment

Supported by DOE grant DE-SC0019518 Phase I: 2019 - 2020, Phase II: 2020 - 2023

Yu Sun, PI CEO of Sunrise Technology Inc. yu.sun@sunriseaitech.com DOE SBIR NP Exchange Meeting, August/23/2022

Outline

- Company Introduction
- Description of the Phase II project
 - Objectives
 - Nuclear Physics Background
 - Schedule and Deliverables
- Project Highlights
 - Trigger Algorithm Description
 - Performance Report
 - Highlights of the final product
- Conclusions, Future Plans and Milestones

About Sunrise Technology Inc.

- Founded in 2017
- Located in an incubator at Stony Brook University, Brookhaven, NY
- Team: three full-time employees, a parttime consulting scientist, and several graduate interns.
- Developing advanced machine learning/deep learning and AI technology for autonomous systems, such as scientific experiments decision-making engines and education platforms.
- Product and Service areas
- 1) FPGA-enabled GNN Solutions
- 2) Embedded system for modeling training
- 3) Deep Reinforcement Learning for large facility control

Core Competencies & Potential Markets

- Machine Learning and Deep Learning Algorithm Design
- AI/ML for Science Facilities
- Data Science for Physics Analysis
- Deep Reinforcement Learning for Orbit Control
- AI-Enabled Heterogeneous Embedded systems (with CPU, GPU, and FPGA) for Science Facilities Automation (particularly accelerators detectors)
- Edge Systems Software Stack

SBIR Phase II Objectives

- Ultimate Goal
 - Design an AI-enabled DAQ trigger system
 - Integrated into sPhenix experiment and reaches the target of 15Khz data acquisition rate.
- Phase II Technical Objectives
 - Designing Graph Neural Networks for High-Speed Physics Event Triggers.
 - Implementing High-Speed Triggers for Nuclear Physics Experiments.
 - Creating a flexible embedded hybrid system to support training and inference.
- Phase II Commercialization Objective
 - Manufacture smart embedded hybrid system to facilitate real-time data collection in large scale experiments and facility control

SBIR Phase II Project Periods

Relevance to DOE NP SBIR Program

- Project Focus:
 - Real-time AI technologies will be applied to the very high-rate data streams from detectors.
 - Accelerate GNN on FPGA, one of the first work that attempts to accelerate GNN prediction.
 - Play the central role in sPhenix and Future EIC detectors running under trigger systems and insitu streaming analysis for event selections.
- Project Impacts:
 - ASCR C55-01 (ACCELERATING THE DEPLOYMENT OF ADVANCED SOFTWARE TECHNOLOGIES), Subtopic a): Deployment of ASCR-Funded Software
 - NP C55-21: Nuclear Physics Software and Data Management and subtopic
 - b. Applications of AI/ML to Nuclear Physics
 - c. Heterogeneous Concurrent Computing.
- Subcontractor/Collaborators
 - Dr. Ming Xiong Liu, Dr. Cameron Dean, LANL
 - Dr. Jin Huang, Dr. Zhaozhong Shi, BNL

The Readout Challenge for High Luminosity Physics

• The readout challenge

- Raw data volume >> hardware bandwidth/storage
- Only a small fraction of data will be recorded to tape
- sPHENIX: DAQ trigger rate, 15kHz
 - AuAu collisions
 - Max collision rate ~50kHz
 - Can collect all central collisions, OK
 - p+p and p+Au
 - Collisions on each beam crossing, ~9.4MHz
 - Okey for high energy jet program with triggers
 - Lose most of the low pT physics events
- AI-based Triggering: filter events to reduce data rates for data archive and offline processing
- sPhenix Trigger TPC (Time Projection Chamber) Data Acquisition
- SBIR project focuses on designing, building, simulating, and benchmarking a prototype event readout system with AI-based fast online data processing and autonomous detector control system that meets the physics and engineering requirements.

sPHENIX experiment under construction at RHIC: - Day-1 physics in 2023

Event Data Descriptions

Moving from images to points

- Image-based methods face challenges scaling up to realistic HL-LHC conditions.
 - High dimensionality $(9K \times 9K \times 3)$ and sparsity
 - Irregular detector geometry
- Instead of forcing the data into an image, use the space point representation.
 - Harder to design models (variable-sized inputs/outputs)
 - But now we can exploit the structure of the data with full precision
- What ML models are appropriate for the event on right
 - Graph neural networks

Trigger Software Pipeline

1. Fetch events from Detector Readout (Use Simulation Data)

2. Data Pre-processing Clustering

3. Tracking + Outlier hits Removal

4. Triggering Decision

5. Triggers on TPC (Interface and integration with sPhenix Detector)

Graph Tracking and Outlier Removal

- What if we structure our data as a *graph* of connected hits?
 - Connect plausibly-related hits using geometric constraints
- What kinds of models can we apply to this representation?
 - o Traditional architectures clearly don't work
 - but there's a growing sub-field of ML called Geometric Deep Learning
- Connect hits on adjacent layers using crude geometric constraints, i.e., $\delta(\phi) \leq \frac{\pi}{4}$ and $\delta(z) \leq 300mm$

With each iteration, the model propagates information through the graph, strengthens important connections, and weakens useless ones.

Trigger Detection Algorithm

- A GNN-based trigger system to decide whether to record the events or not, with the processed track information retrieved from the captured 3D sparse images by the sPHENIX detectors.
 - Hits based algorithm: each graph node is a hit on detector and events are represented by a collection of hit clouds. Graph Neural Network is simple to implement and has fast computation time.
 - Track based algorithm: each graph node is a track that represents a particle generated from collision. Event consists of the tracks for particles. Graph Neural Network is hard to implement but we can learn high-level physics knowledge to improve the trigger accuracy.

Trigger Detection Network Architecture

- SEBA set encoder with Bipartite aggregator
- Readout Functions:
 - Mean Pooling
 - Max Pooling
 - Pool on the concatenation
 of node embedding from
 this GNN layer

Physics-Aware Graph Neural Networks for trigger

- Each track represents the trace of a particle. Can we estimate some high-level physics information, e.g., Particle Mass, Momentums, and particle ID?
- We demonstrate the physics-momentum guided GNN improves accuracy by 15~16% over those without it.

 $P_T = 0.3BR$, where B is the magnetic field strength

Fig. 3: The left figure shows that a positively charged particle will undergo a circular motion clockwise with a radius R in the uniform magnetic field B along the +z direction. The right figure shows an example track with a fitted circle. The black cross markers represent five hits on the example track; the red dashed curve approximate a particle track and is the fitted circle with a radius R.

Experiment Results

\mathbf{T}	able 5: Abla	tion Study of	Activations
	Activation	Accuracy	AUC
	ReLU	90.74%	96.87%
	Tanh	90.19%	96.58%
	Potential	90.41%	96.75%
	Softmax	$\mathbf{92.18\%}$	$\mathbf{97.68\%}$

Fig. 7: Accuracy performance in respect to hidden dimension for two/three-layer models and different number of aggregators.

Table 2: Comparison to Baseline Models with Estimated Radius.

	with	LS-radius			with	out radius	
Model	#Parameters	Accuracy	AUC	:	#Parameters	Accuracy	AUC
Set Transformer	300,802	84.17%	90.61%		300,418	69.80%	76.25%
GarNet	$284,\!210$	90.14%	96.56%		284,066	75.06%	82.03%
PN+SAGPool	780,934	86.25%	92.91%		$780,\!678$	69.22%	77.18%
BGN-ST	$355,\!042$	$\boldsymbol{92.18\%}$	97.68%		354,786	76.45%	83.61%
Year 2022)	$\int \!$	Ye	ar 2021	16

FPGA Implementation

hls4ml is a software package for creating HLS implementations of neural networks.

https://hls-fpga-machine-learning.github.io/hls4ml/

FPGA Performance

Pipeline Stage	Number of Parameters	Accuracy	Kernel Time (μ s)	Speedup
Clustering	-	99.2%	85	1152×
Tracking	745	92.8%	23	280×
Triggering	2441	68.1%	35	21×
Full Pipeline	3186	68.0%	140	750×

Deep Learning Training and Inference Product Hardware

Future Plan: Integrated into the sPHENIX Readout Upgrade (DOE Project led by LANL)

AI-based real-time system: Fast Data Processing and Smart Trigger

- Identify heavy quark events in p+p and p+Au collision events

Conclusion, Accomplishments and Milestone

- 1. Implement the Trigger Detection Algorithm based on advanced GNN
- 2. Implement Physics-aware pipeline for decision making
- 3. Extremely fast GNN algorithm on FPGA (3KHz/second for end-to-end pipeline), 20 times faster than GPU (2021).
- 4. With the Support of HLS4ML, the trigger software runs on a server and embedded system with FPGA (2022)
- Year 2 milestones
- Simulation Dataset with MVTX+INTT (1~5 million events) and retrained models (Done)
- FPGA implementation for new models with MVTX and INTT (in Progress)
- Fast prototype design for online triggering hardware (Done)
- Design and implement embedded system with both training (on GPU) and inference (on FPGA)

Year 3 milestones:

• sPhenix trigger to be deployed for upcoming sPhenix experiment run at 2023.

Acknowledgement

• Thank DOE Office of Science, Dr. Michelle Shinn for funding this project, and every contributor for working on this project!