

LARGE VOLUME RING-CONTACT HPGE DETECTORS (RCD)

NP SBIR Phase II Year 1

20220823 NP SBIR Exchange Meeting Zoom

Ethan Hull (PI) CEO and Technical Director, PHDS Co.

PHDS Co. History

Est. Fall 2004 – Nuclear and Solid-State Physics Origin – DOE Labs (LLNL, LBNL)

Enabling

Capabilities

- History: Custom Nuclear-Physics Detectors (Lab)
- Recently: Modular HPGe Systems (Lab and Field)
- Complete Germanium Manufacturing + R&D at PHDS Co.
 - **Concept Design**
 - Crystal Growth [2012]
 - **Detector Fabrication**
 - System Integration
 - Software application
 - Sales & Service

GeGI (15 lbs.) **2016 Hand Portable Imager** + Spectrometer 10x less size and weight

PHDS

in Imag

Versatile Global

connercial Product

Fulcrum (8-9 lbs.) **2018 Hand Portable Spectrometer**

PHDS

LoPro (8-11 lbs.) **2020 Specialty Spectrometer**

NPX (150 lbs.) 2008 Laboratory

From *Frontiers* of Nuclear Physics

to *Frontlines* of Nuclear Security

connecial

Product

Specialty Operations

Products

PHDS Co. now manufactures and sells 4 HPGe products

Detect, Identify,

Locate, Quantify

Detect, Identify,

Quantify

Detect, Identify

Special Apps

Radiochemistry, Rare Isotopes

NP Imager Nuclear Physics – Radiochemistry Imaging Spectrometer

HPGe Isotope Identification Source Location Imaging Source Distribution Imaging Quantitative Imaging Compact Detector System

NP Imager

Brock Roberts Electrodynamic

Germanium System Evolution at PHDS Co.

7-8 lbs. Hand Portable

Gamma-ray Detection and Imaging Applications

Ring Contact Detector (RCD) Concept – David Radford

Ring Contact Detector (RCD) Concept – David Radford

Electrostatics Calculations show scalability up to <u>8 kg of depleted HPGe</u>

RCD Features

Largest Mass

Fewest Detectors per kg of Ge Lowest background (connections, mounting etc.) Majorana + LEGEND

High efficiency – R&D and Counting Labs

RCD Phase II Experimental Plan – 3 parts Develop the 3 key enablers to demonstrate RCD

1. Mechanical Preparation

Diamond Grinding Polishing V-Groove Through Hole

2. Semiconductor Detector Processing

Etch Lithiation Boron Implanation Intrinsic Surface Passivation Testing

3. Crystal Growth

Uniformity Length of HPGe Region Charge Collection

60 mm deep-form diamond core bit (with slots)

60 mm deep-form diamond core bit (without slots)

1. Mechanical Preparation Develop technique

Practice slab of non-detector grade HPGe

60 mm x 60 mm cylinder core-drilled from the slab

Prototype RCD detector cut from a slab of detector-grade HPGe

60 mm x 60 mm cylinder V-Groove cut on lathe

and polish - ready

2. Semiconductor Detector Processing Steps Li, p+, passivation - geometry

2. Semiconductor Detector Processing Chemical Etch

After Chemical Etch 3:1 HN0₃: HF

2. Semiconductor Detector Processing Lithium

Li thermal diffusion system

Special 5-boat array to accommodate through hole Evaporate Li, then heat to 170C for 2 hours in vacuum

2. Semiconductor Detector Processing Lithium evaporation and diffusion

0 minutes

1.5 minutes

3.0 minutes

2. Semiconductor Detector Processing Lithium evaporation and diffusion

Lithium coating

2. Semiconductor Detector Processing Lithium

5th boat spot on ss foil through the hole

2. Semiconductor Detector Processing Lithium

ss foil shield with coil spring

Repeat lithium diffusion with the detector inverted

2. Semiconductor Detector Processing Boron Implant

2. Semiconductor Detector Processing Boron Implant – Ion implantation system

The end station required modification to fabricate the RCD

2. Semiconductor Detector Processing Boron Implant – RCD End Station

2. Semiconductor Detector Processing Boron Implant – Rotating detector mount

2. Semiconductor Detector Processing

Passivation – amorphous germanium (V-groove)

Ss covers to maintain electrical contact with Li (a-Ge is not conductive)

2. Semiconductor Detector Processing Finished detector

2. Semiconductor Detector Processing Finished detector - testing

Mounted in a four-place test cryostat

Spring loaded wire loop on ring contact. This is the signal contact

2. Semiconductor Detector Processing RCD detector testing

An early test shows the detector taking 400 V. A noisy spectrum was measured at 300 V.

2. Semiconductor Detector Processing RCD detector testing

-try again

A test shows the detector taking 1200 V. A noisy spectrum was measured at 1000 V.

2. Semiconductor Detector Processing RCD detector testing and again.

A more recent test shows the detector taking 2200 V. A spectrum was measured at 1800 V. $V_{depl} = 1920$ V.

Progress points

- Depleted Detector 1920 V is reasonable
- Capacitance is reasonable
- Spectroscopy is so so
 - Working on this now...

Semiconductor physics observation

The full-energy 1332-keV peak efficiency decreases dramatically with increasing bias near V_{depl} – an interesting result

Any holes reaching the p-type intrinsic surface are effectively stopped and contribute little (if any signal)

A p-type surface channel affects a significant volume of the RCD detector

p-type surface channel

An n-type surface channel would affect a smaller volume of the RCD detector

Currently working to move the SC from p to n (or ideally i)

n-type surface channel

RCD Phase II

1. Mechanical Preparation

2. Semiconductor Detector Processing

Thank you