High Performance Glass Scintillators for Nuclear Physics Experiments

□ Scintilex

□ Electromagnetic Calorimeter projects

Examples of homogeneous calorimeters

□ Experiment Requirements and STTR goals

□ Project Overview and first results

Outlook

CINTILEX

Principal Investigator: Tanja Horn Business Official: Ian L. Pegg

Award: DE-SC0020619

Scintilex Overview

Main focus: design and construction of instrumentation based on Cherenkov and scintillation light using novel materials

Applications: particle detection in nuclear physics experiments and homeland security; also medical

Activities and expertise

- R&D new detector materials
- Pilot testing and scale up; hardware
- Software development and DAQ systems

Activities related to scintillator material

- Jefferson Lab (JLab): EM calorimeters detectors: TCS@NPS, Hy(F)CAL ...
- Electron-Ion Collider (EIC): eRD1, eRD105, EPIC Detector
- PANDA EMCal test runs

Scintillation Detector Basics: Electromagnetic Showers

 \Box Dominant processes at high energies (E > few MeV)

Photons : Pair production

$$\sigma_{\text{pair}} \approx \frac{7}{9} \left(4 \, \alpha r_e^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}} \right)$$

= $\frac{7}{9} \frac{A}{N_A X_0}$ [X₀: radiation length] [in cm or g/cm²]

Absorption coefficient:

Electrons : Bremsstrahlung

$$\frac{dE}{dx} = 4\alpha N_A \ \frac{Z^2}{A} r_e^2 \cdot E \ \ln\frac{183}{Z^{\frac{1}{3}}} = \frac{E}{X_0}$$

 $\bigstar E = E_0 e^{-x/X_0}$

Electromagnetic Calorimeters in Nuclear physics

In nuclear physics, calorimetry refers to the detection of particles, and measurements of their properties, through the total absorption in a block of matter, the calorimeter detector

Calorimeters make use of various detection mechanisms, e.g.,

- Scintillation
- Cherenkov radiation
- \circ lonization

Types of Electromagnetic Calorimeters

Two general classes of calorimeters

- Sampling Calorimeters: Layers of passive absorber (such as Pb or Cu) alternate with active detector layers such as Si, scintillator, liquid argon etc.
- Homogeneous Calorimeters: A single medium serves as both absorber and detector, e.g., crystals (BGO, PbWO4, ...) or glass scintillators

Requirements on scintillator materials

Conversion of energy into visible light – Light Yield

□ Attenuation Coefficient – Radiation length

□ Scintillation Response – emission intensity, decay kinetics

□ Emission spectrum matching between scintillator and photo detector – emission peak

Chemical stability and radiation resistance – induced absorption coefficient

 \Box Linearity of light response with incident photon energy – LY(100µs)/LY(10ms)

□ Moliere radius for lateral shower containment

1. Examples of homogeneous EM Calorimeters at JLAB

Forward CAL Insert (Hall D)

2. Homogeneous Electromagnetic Calorimetry at EIC

4.5m F6 F5 F4 F3 F2 F1 F2 F3 F4 F5 50cm

> Large-volume detectors requiring large numbers of homogeneous scintillator blocks and custom shapes

❑Crystals are expensive (\$15-25/cm³) – EIC barrel EMCal not affordable

Auxiliary detectors not shown

Glass-based Scintillators for Calorimeter Detectors

An alternative active calorimeter material that is more cost effective and easier to manufacture than, e.g. crystals

Material/ Parameter	Density (g/cm³)	Rad. Length (cm)	Moliere Radius (cm)	Interact Length (cm)		Emission peak	Decay time (ns)	Light Yield (γ/MeV)		Radiation type	Z _{Eff}
(PWO)PbWO ₄	8.30	0.89 0.92	2.00	20.7 18.0	2.20	560 420	50 10	40 240	>1000	.90 scint. .10 Č	75.6
(BaO*2SiO ₂):Ce glass	3.7	3.6	2-3	~20		440, 460	22 72 450	>100	10 (no tests >10krad yet)	Scint.	51
(BaO*2SiO ₂):Ce glass loaded with Gd	4.7-5.4	2.2		~20		440, 460	50 86-120 330-400	>100	10 (no tests >10krad yet)	Scint.	58

Also: (BaO*2SiO₂):Ce shows no temperature dependence

Shortcomings of earlier work:

- > Macro defects, which can become increasingly acute on scale-up
- Sensitivity to electromagnetic probes

Scintilex STTR Concept

Glass fabrication is expected to be cheaper, faster, and more flexible than PbWO4 crystals.

Process optimization to prevent non-uniformities

Shortcoming of earlier work: macro defects that can become increasingly acute on scale up

Developed new processing method at CUA/VSL/Scintilex

DSB:Ce glass block manufactured in Europe for Nuclear Physics Experiments - macro defects not under control and become increasingly acute on scale-up. \rightarrow not acceptable for homogenous calorimeters

Sample made at CUA/VSL based on previous DSB:Ce work

Samples made at CUA/VSL/Scintilex with our new method

Glass Scintillator formulation optimization

Scale-up and larger scale production

SciGlass 20cm has been produced reliably; We tested a 3x3 20 cm SciGlass prototype detector in beam and measured its performance

Measured performance for 20cm SciGlass (7X₀) as per GEANT simulation

Phase 2 started large-scale production or larger blocks (40+ cm, rectangular and projective shapes)

The first polished 40 cm SciGlass (15X₀) produced in late 2021, the first detector prototypes produced in summer 2022

Radiation Hardness of SciGlass

SciGlass blocks of 20 cm length were irradiated with a strong Co-60 source

□ Irradiation to a dose of 30 Gy (estimated dose for 1 year running at EIC) at a rate of 1 Gy/min

Samples are EM radiation hard

SciGlass blocks were exposed to hadron radiation with 40 MeV protons with fluences 10¹⁵ p/cm²

Samples are hadron radiation hard

Photograph taken immediately after irradiation. No visual evidence of radiation damage¹⁴

Testbench and Scale up optimization

- Maintaining and optimizing optical properties is one of the biggest challenges in scale-up of scintillating glass for nuclear physics experiments
- Testbench: optical characterization and response to cosmics and radioactive sources to benchmark against specific experiment requirements and to prepare for detector prototype beam tests

Testbench set up for rapid feedback loop on SciGlass

Significant improvements made in 40cm SciGlass performance within one year

Detector Prototype Beam Tests

Prototype 3x3 array installed and tested – energy resolution measured for three different beam energies

Results for ~7 X₀ blocks – matches with Geant4

Plans for 2022: Test with ~15X₀ (40cm) long blocks

CINTILEX

SciGlass at EIC

Scattered electron kinematics measurement is essential at the EIC

- High precision, hermetic detection of the scattered electron is required over a broad range in h and over energy range from 0.1 to tens of GeV
 - In the very backward direction high precision is required for electron kinematics measurement
 - In backward and barrel region it is required for clean electron identification.
 In the barrel region, driven by high-x and high-Q² science drivers
- In ECCE SciGlass was chosen in the barrel as this provides excellent e/h separation due to its good energy resolution, matched to the backward region need, and its cost effectiveness

	η	[-41.75]	[-1.75 1.3]	[1.3 4]
	Material	PbWO ₄	SciGlass	Pb/Sc
	X ₀ (mm)	8.9	24-28	16.4
	R _M (mm)	19.6	35	35
	Cell (mm)	20	40	40
	X/X ₀	22.5	17.5	19
7	D _z (mm)	60	56	48

Requirements			
Good energy resolution			
 e.g., region -2 < η < -1 			
requires ~7%/√E			
\Box e/h separation up to 10 ⁻⁴			

SciGlass barrel EMCal in the EIC Reference Detector

Barrel ECAL(BEMC)

Homogeneous, projective calorimeter based on SciGlass, cost-effective alternative to crystals

- The barrel is one of the largest sub-detectors with 8000 homogeneous scintillator blocks of 45.5cm length (and ~10cm radial readout space)
- It is extended in the negative rapidity direction (with η coverage from -1.75 to +1.3) to provide hermeticity with the backward ECal.
- In the backward direction hermeticity is provided by the combination of barrel, backward ECals, and mRICH complements (3σ e/h up to 2 GeV). Readout and supply lines are included.
- In the forward direction the barrel EMCal faces much higher range of particle rates across the acceptance of the forward endcap

SciGlass barrel EMCal Projected Performance

- \Box Assumes 45.5cm long blocks (17X₀) close to 40cm prototype
- □ Implemented with the active components and support structures
- □ Also important to consider materials in front of the EM calorimeter as it impacts performance (resolution, rejection, etc.)

Outlook

- Demonstrated a novel scintillating glass (SciGlass) as an cost-effective alternative to scintillating crystals for precision electromagnetic calorimeters in nuclear physics experiments, e.g., at the EIC
- SciGlass 20cm has been produced reliably; started large-scale production or larger blocks (40+ cm, rectangular and projective shapes)
- □ Constructed and commissioned methods to characterize SciGlass. Performance validation with prototype 3x3 SciGlass array energy resolution measured for three different beam energies

\Box Results for ~7 X₀ blocks – matches with Geant4

□ Plans for 2022: Test with ~15X₀ (40cm) long blocks

Acknowledgement: Award: DE-SC0020619

