Highly Transparent Aerogel with Refractive Index < 1.01

Scintilex

Aerogel Cherenkov detectors in NP

Two examples

Experiment Requirements and STTR goals

□ Project Overview and results

Outlook

Principal Investigator: Tanja Horn Business Official: Ian L. Pegg

SCINTILEX

Main focus: design and construction of instrumentation based on Cherenkov and scintillation light using novel materials

 Applications: particle detection in nuclear physics experiments and homeland security; also medical

Activities and expertise

- R&D new detector materials
- Pilot testing and scale up; hardware
- Software development and DAQ systems
- □ Activities related to aerogel
 - JLab SHMS/HMS detectors; CLAS12 RICH
 - eRD14 EIC Consortium, mRICH
 - PANDA anti-proton test runs

Goal: Particle Identification for charged subatomic particles, e.g. distinguish protons, pions, and kaons through Cherenkov radiation

Two main types of Cherenkov detectors:

Ring-Imaging Cherenkov (RICH) – determine particle velocity by measuring the Cherenkov angle

$$\cos\theta > \frac{1}{n\beta} \qquad \beta > \frac{v}{c}$$

Threshold detectors – separate two types of particles by determining whether or not each fulfills the threshold condition for Cherenkov radiation

$$v_t > \frac{c}{n}$$

Material Choice: transparent gases, condensed materials, or Aerogel depends on velocity range expected and specifics of experiment

Radiators for Cherenkov Light

SCINTILEX

1. The Hall C SHMS Aerogel Detector

Built by CUA 2011-13, in operation since 2014

SCINTILEX

Jefferson Lab, Newport News, Virginia

Hall C Super-High Momentum Spectrometer (SHMS)

SHMS aerogel detector goal: distinguish protons from kaons from 1 to 10 GeV/c

2. The CLAS12 RICH

Continuos Electron Beam Accelerator Facility (CEBAF)

CEBAF Large Acceptance Spectrometer (CLAS)

RICH goal: $\pi/K/p$ identification from 3 up to 8 GeV/c and 25 degrees ~4 σ pion-kaon separation for a pion rejection factor ~ 1:500

Mechanical

- Dimension tolerance: 0.25% of tile size in transverse dimension and 1-2% in thickness
- Tile integrity: >95% of tiles without bubbles, visible cracks and >95% of tiles without chips on corners; chips limited to <1% area</p>
- Surface planarity: $\Delta_{surf} < 1\%$ of lateral side

Optical

- Density variation: < 4.7%</p>
- Refractive index variation: <0.2%</p>
- Scattering length better than 43 mm at 400nm
- Absorption coefficient: A >0.95

Tile sizes as large as possible
Index <1.01 for high momenta

Scintilex - STTR Concept

Production 10-20 aerogel tiles - complete

Optical Properties

Installation/Commissioning of Single Counter

Preliminary result for Scintilex/Aspen aerogel n=1.014: Number of photoelectrons produced ~ 10.5

SCINTILEX

Beam Test Campaign

Use AI to Optimize Large-Size Composite Aerogels

- Aerogels with low refractive indices are very fragile tiles break during production and handling, and their installation in detectors.
- To improve the mechanical strength of aerogels, Scintilex developed a reinforcement strategy. The general concept consists of introducing fibers into the aerogel that increase mechanical strength, but do not affect the optical properties of the aerogel.

AI approach: Bayesian Optimization

...to optimize aerogel+fiber

Simulation of Aerogel with block of Fibers

Variable	Description	# pars	Range
Rigid rotation of tiles f_rotx, f_roty	all fibers rotating by same angle along x, y (z along aerogel thickness)	2	(-5,5), (-5,5) deg
Single fibers rotation f_sthx, f_sthy	used to estimate tolerances on single fiber angles x, y	2	(0.1,1.0) deg
Single fibers shifts f_x, f_y, f_z	to estimate tolerances on single fiber positioning x, y, z	3	(0.5, 3.0) mm
Fiber diameter	Fixed to 50um	0	
Fiber pitch f_pitch	distance between fibers	1	(5,15) mm
Fiber gap	distance between planes of fibers fixed to 25 mm	0	
Aerogelthickness	Fixed to 6 cm	0	
Aerogel width a_width	Side of a square, orthogonal to thickness	1	(8,12) cm
Aerogel refractive index a_n	Allowed to vary	1	(1.01,1.05)

Table of Sensitive Parameters (fiber and aerogel)

4

Aer-Fi Preliminary Results

Consider more Objective Functions

- Objective functions: mechanical strength and resolution
 - Perhaps add cost later as well
- To develop the mechanical strength function stress simulations in Autodesk Inventor are being developed
- Al approach: At the moment we have a genetic algorithm combined to some metric to define the Pareto front of the functions.

Fabrication Mechanically Reinforced Tiles

Figure 6: Mechanically reinforced aerogel tiles

Preliminary result for Scintilex fiber reinforced aerogel: no significant impact on detector performance

Consistent with MC simulations

SCINTILEX

□ Demonstrated capability to produce n<1.014 aerogel (15x15x(2-3)cm³)

- Constructed and commissioned methods to characterize aerogel tiles optical properties and performance. Preliminary results:
 - Optical properties of tiles are superior to Japanese aerogel
 - Light output suitable for nuclear physics threshold detectors
- Ongoing work to establish uniformity of large tiles and further scale up, as well as beam test campaign
- Investigating novel method to reinforce optical aerogels to facilitate manufacturing and use in nuclear physics detectors

Error on the particle velocity $\boldsymbol{\beta}$ measured with a RICH

$$\frac{\sigma_{\beta}}{\beta} = \frac{\tan\theta_{\mathbf{Ch}}}{\sqrt{\mathbf{N}_{\gamma}^{\mathbf{det}}}} \sigma_{\theta_{\mathbf{Ch}}}$$

Depends on:

Number of detected photons

Error on the Cherenkov angle of the emitted photons $\sigma_{\theta Ch}$

$$\sigma_{\theta_{\mathbf{Ch}}} = \sqrt{\sum_{\mathbf{i}} (\sigma_{\theta_{\mathbf{Ch}}}^{\mathbf{i}})^2}$$

Resolution	Direct (mrad)	Reflected (mrad)
Emission Point	1.7	1.7
Readout Accuracy	2.1	1.0
Chromatic Aberration	3.0	2.5
Aerogel Optical Prop.	≤1	≤ 2
Mirror System		≤1
σ _θ (1 p.e.)	4.2	3.9

Requirements	Direct	Reflected
Max. momentum	8 GeV/c	6 GeV/c
σ_{θ} (4 σ separation)	1.4 mrad	2.5 mrad
Np.e. Yield	≥ 10	≥ 3

Aerogel General Requirements

- Evenly cover a large detector surface (~6000-11000 cm²)
 - to reduce gaps between the tiles, transverse tile sizes as large as possible

□ Tiles are stacked in layers up to 10cm

for high and uniform efficiency need uniform thickness and small variations over the tile surface

and an of	
P CO	2 1.0 11

р _{знмз}	n	K _{pe}	P _{pe}	Discrimination (5 σ)
3.5	1.030 (1.015)	34 (9)	<0.5 (<0.5)	>1000:1 (lower)
4.5	1.030 1.015	40 15	13 <0.5	1000:1 >1000:1
5.5	(1.030) 1.015	(43) 19	(26) 1	(20:1) >1000:1
6.1	(1.030) 1.015	(44) 20	(31) 6	(10:1) 200:1

- Multiple refractive indices required to cover for particle momenta between 1-10 GeV/c
 - need very low index to reach the highest momenta
 - need tile-to-tile variation to be small

RICH Design and aerogel

72 (3 cm thick) and 22 (2 cm thick) full squared tile + 30 shaped ones High transparency and large refractive index (n=1.05) to ensure photon yield Large area 20 x 20 cm² to reduce losses at the edges, variable thickness (2 and 3 cm)

SCINTILEX