

High Performance FPGA-Based Embedded System for Decision Making in Scientific Environment

Supported by DOE grant DE-SC0019518 Phase I: 2019-2020, Phase II: 2020 – 2022 (2023)

Yu Sun Principal Investigator and CEO sunrisetechnology001@gmail.com SBIR Exchange, August/17/2021-August/19/2021 Mingxiong Liu Co-PI of subcontract science Lead

Outline

- Company Introduction and its capabilities
 - Customers
 - Success Story: sPhenix Prototype AI-Enabled Detector
- Description of the Phase I project: Proof of concepts
- Phase II project: the objectives
- Nuclear Physics Background (Dr. Ming Liu)
- Trigger Algorithm Description
- Trigger Hardware Description
- Performance Report of Accuracy and Throughput
- Accomplishments, Future years' Plan and Milestones
- Highlights of the final products
- Plans

About Sunrise Technology

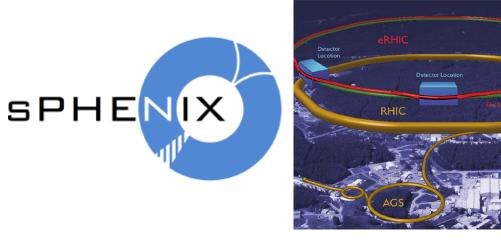
Founded in 2017 and located in Incubator@stonybrook Providing AI technologies for science experiment control and education

The team: two full-time software and hardware engineer, one full-time postdoctoral associate, a part-time computer science consultant. We have been working with several graduate interns. Product and Service areas:

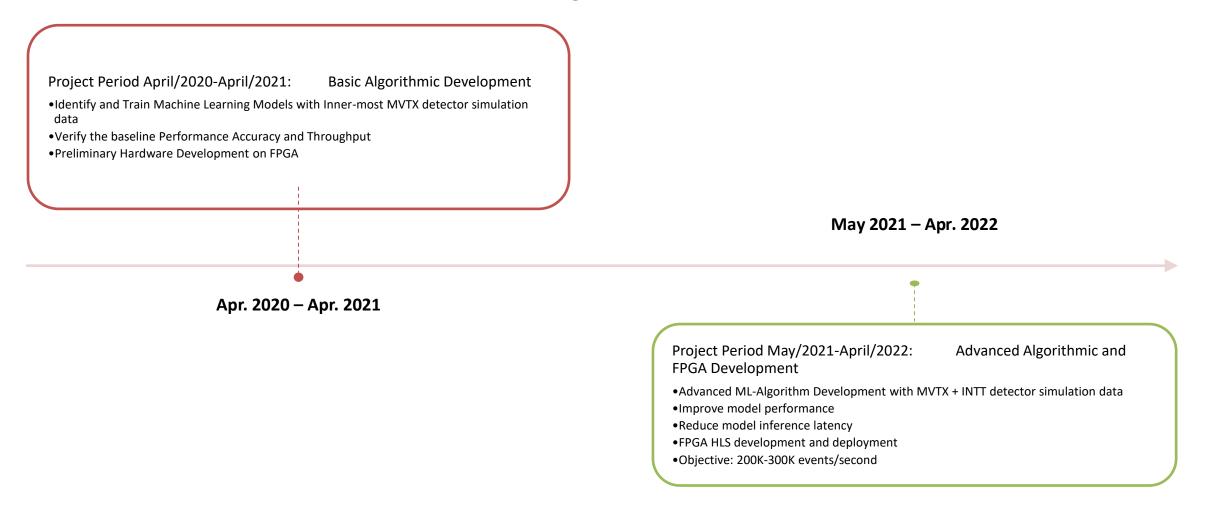
- 1) GNN machine learning models
- 2) Science Embedded Systems
- 3) FPGA-enabled GNN Solutions
- 4) FPGA High-level-Synthesis (HLS)
- 5) Embedded system for modeling training
- 6) Deep Reinforcement Learning for large facility control

Core Competencies of Project Team and Customer

- AI/ML for Science Facilities
- Machine Learning and Deep Learning Algorithm Design
- Deep Reinforcement Learning for Orbit Control
- AI-Enabled Heterogenous Embedded systems with CPU, GPU, and FPGA) for Science Facilities Automation (particularly, accelerators detectors)
- Data Science for Physics Analysis
- Edge Systems Software Stack



SBIR Project Periods



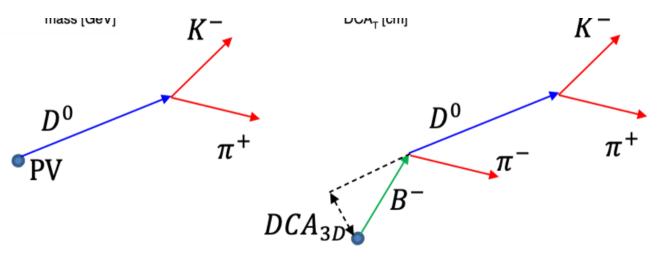
Benefit to DOE NP SBIR Program

- Project Focus:
 - Real-time AI technologies will be applied to the very high-rate data streams from detectors.
 - Accelerate GNN on FPGA, one of the first work that attempts to accelerate GNN prediction.
 - Play the central role in sPhenix and Future EIC detectors running under trigger systems and in-situ streaming analysis for event selections.
- Project Impacts:
 - ASCR Topic 6, Subtopic b): EMERGING INFORMATION TECHNOLOGIES FOR SCIENTIFIC FACILITIES AND HPC ENVIRONMENTS
 - NP Topic 32: Nuclear Physics Software and Data Management and subtopic b. Applications of AI/ML to Nuclear Physics Data Science
 - US DOE SBIR FY 2022 Topics Document: areas a), b, c), in Pages 90-92.
 - NP TOPIC 33. NUCLEAR PHYSICS ELECTRONICS DESIGN AND FABRICATION
 - Use FPGA as prototype for Front-End Application-Specific Integrated Circuits (subtopic b)
 - Provide ML-based Data processing capability for Next Generation Pixel Sensors
 - NP TOPIC 34. NUCLEAR PHYSICS ACCELERATOR TECHNOLOGY
 - Subtopics f. Accelerator Control and Diagnostics

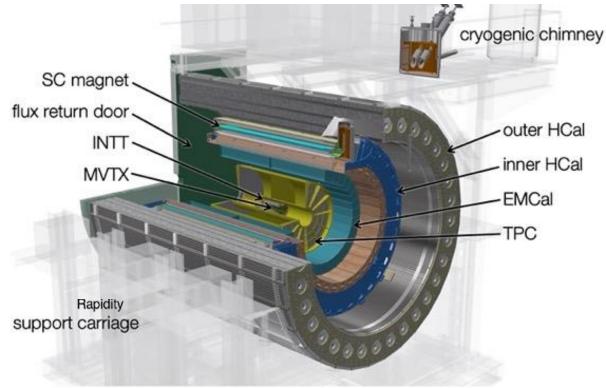
The Readout Challenge for High Luminosity Physics

• The readout challenge

- Raw data volume >> hardware bandwidth/storage
- Only a small fraction of data will be recorded to tape
- sPHENIX: DAQ trigger rate, 15kHz
 - AuAu collisions
 - Max collision rate ~50kHz
 - Can collect all central collisions, OK
 - p+p and p+Au
 - Collisions on each beam crossing, ~9.4MHz
 - Okey for high energy jet program with triggers
 - Lose most of the low pT physics events
- AI-based Triggering: filter events to reduce data rates for data archive and offline processing
- sPhenix Trigger → TPC (Time Projection Chamber) → Data Acquisition
- SBIR project focuses on designing, building, simulating, and benchmarking a prototype event readout system with AI-based fast online data processing and autonomous detector control system that meets the physics and engineering requirements.



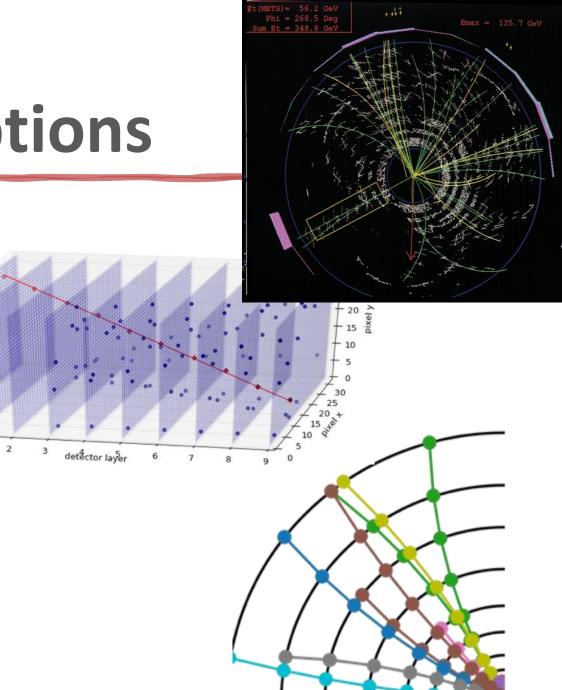
sPHENIX experiment under construction at RHIC: - Day-1 physics in 2023

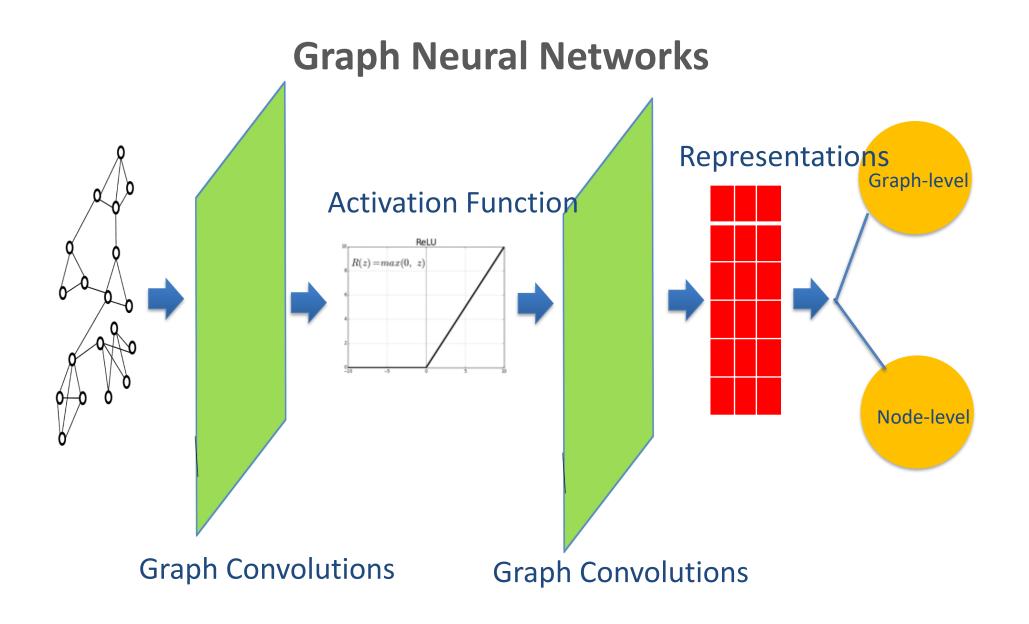


Event Data Descriptions

Moving from images to points

- Image-based methods face challenges scaling up to realistic HL-LHC conditions
 - High dimensionality $(9K \times 9K \times 3)$ and sparsity
 - Irregular detector geometry
- Instead of forcing the data into an image, use the space point representation
 - Harder to design models (variable-sized inputs/outputs)
 - But now we can exploit the structure of the data with full precision
- What ML models are appropriate for the event on right
 - Recurrent neural networks and Graph neural networks





Trigger Software Pipeline

Data Pre-processing Clustering (Work in Progress on FPGA implements)

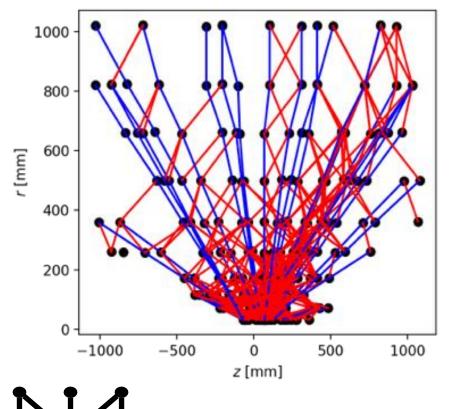
1. Fetch events from event buffer (Work in Progress)

2.

- 3. Tracking + Outlier hits Removal (Done in FPGA)
- 4. Triggering (Done in FPGA, need performance tuning)

5. Triggers on TPC (Interface and integration with sPhenix Detector)

Graph Tracking and Outlier Removal



InputNet

EdgeNet

- What if we structure our data as a graph of connected hits?
 - Connect plausibly-related hits using geometric constraints
- What kinds of models can we apply to this representation?
 - o Traditional architectures clearly don't work
 - but there's a growing sub-field of ML called Geometric Deep Learning

EdgeNet

• Connect hits on adjacent layers using crude geometric constraints, i.e., $\delta(\phi) \leq \frac{\pi}{4}$ and $\delta(z) \leq 300mm$

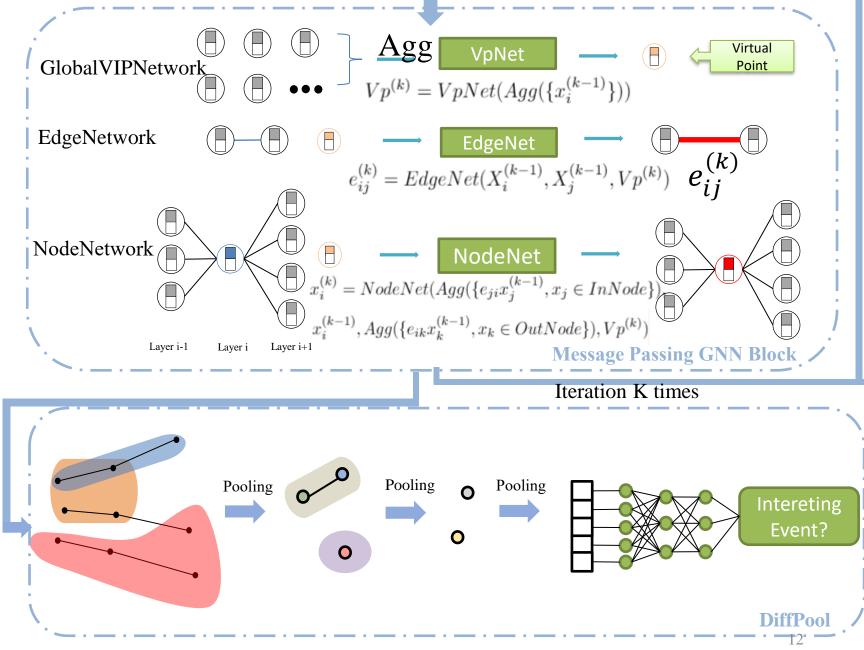
NodeNet

With each iteration, the model propagates information through the graph, strengthens important connections, and weakens useless ones.

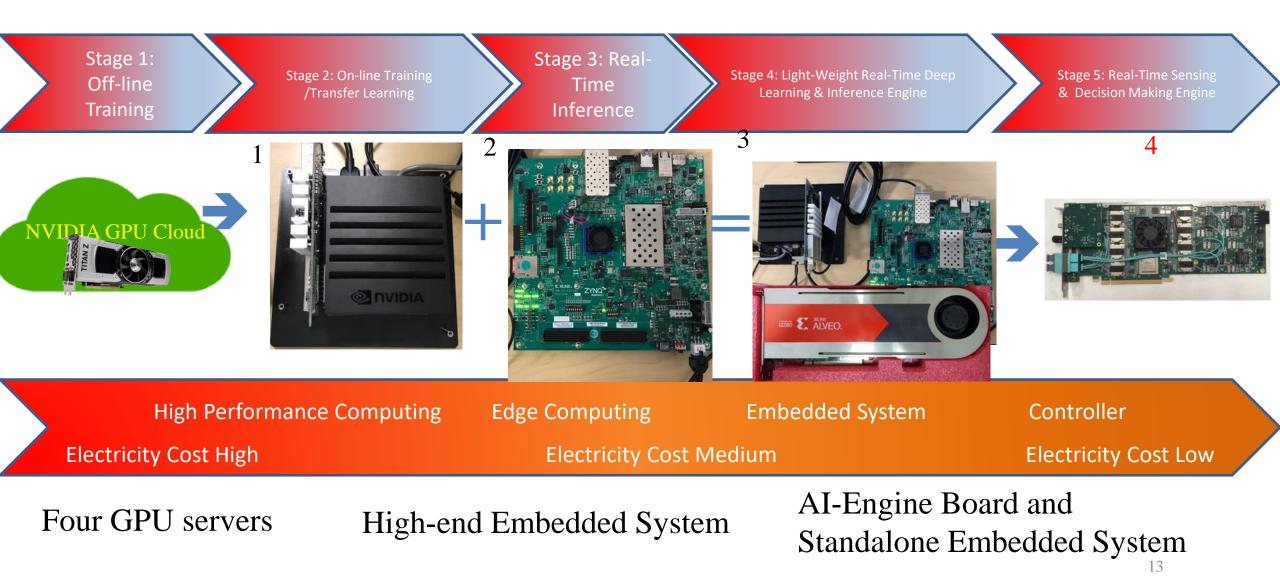
NodeNet

EdgeNet

Trigger Detection



Deep Learning Training and Inference Product Hardware



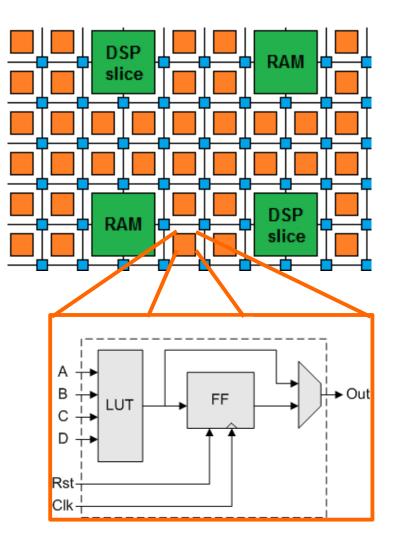
FPGAs

5us latency to decide whether acquire event data in TPC

ASIC and FPGA

- Field-programmable gate arrays are a common solution for fastcomputing
- Building blocks:
 - Multiplier units (DPSs) [arithmetic]
 - Look Up Tables (LUTs) [logic]
 - Flip-flops (FFs) [registers]
 - Block RAMs (BRAMs) [memory]
- Algorithms are wired onto the chip
- Programming traditionally done in Verilog/VHDL
 - Low-level hardware languages
- Possible to translate C to Verilog/VHDL using High Level
 Synthesis (HLS) tools

Alveo U280 FPGA 9024 Multipliers 1.4 M LUTs 2.6 M FFs 8G HBM 53MB Block RAM



Programming Environment for FPGA

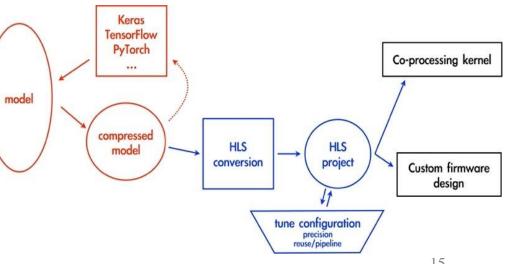
hls4ml is a software package for creating HLS implementations of neural networks-

https://hls-fpga-machine-learning.github.io/hls4ml/

- Supports common layer architectures and model software
- Highly customizable output for different latency and ٠ size needs
- Simple workflow to allow quick translation to HLS ٠
- Design model with standard software tools • (Keras, Tensorflow, PyTorch)
- Pass network architecture and weights/biases ٠ along with configuration parameters to hls4ml (creates HLS project)

Xil inx DPU

- **Only handles CNN**
- A predefined set of deep learning modules
- Does not support Matrix operations.
- Does not work for GNN
- Inefficient for large pipelines require CPU to handle I/O and coordinate FPGA
- Not appropriate for trigger detection with sparse images

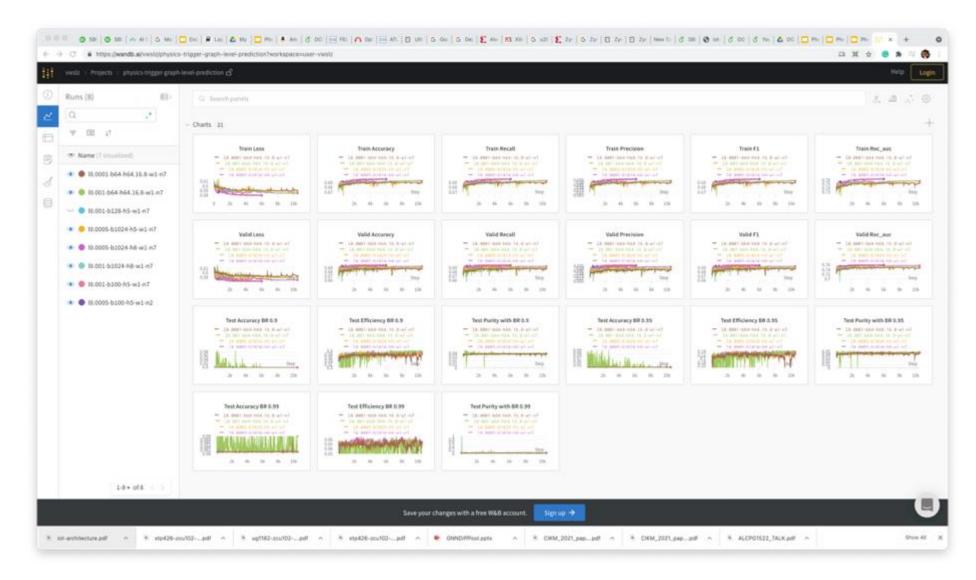


Performance Analysis: Accuracy and Throughput

	Current performance		Goal 1	Goal 2
Efficiency	50%	25%	20-50%	90%
Purity	5%	5%	5%	5%
Background Rejection	90%	95%	99%	95%

- Accuracy for Track Reconstruction
- Accuracy for Trigger Detection
- F1 and AOC for Trigger Detection
- Given the percentage of trigger events in original dataset and background rejection rate, calculate the efficiency and purity of the detected triggers

Training Dashboard



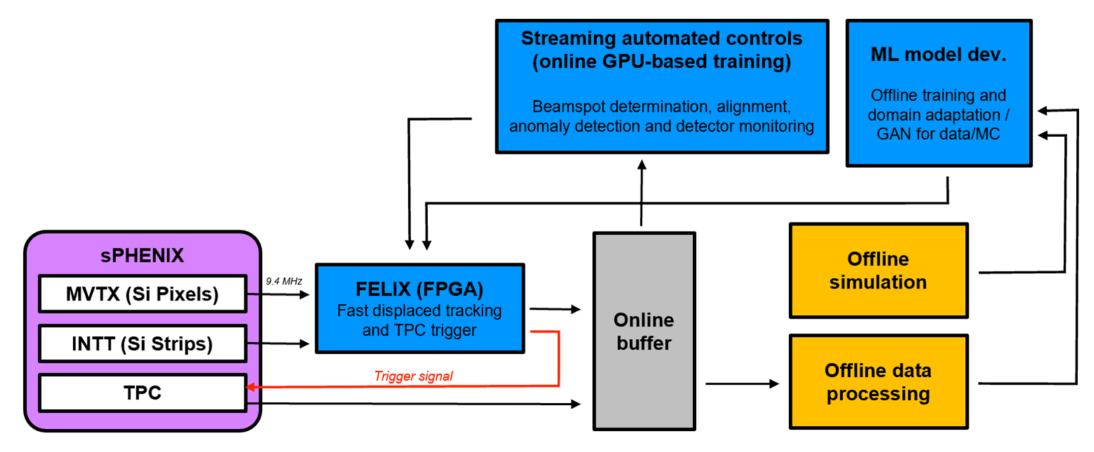
Tracking + Outlier Detection Performance Results

- Graph Neural Network (GNN)
- Without noise, cluster the pixels with ground truth Accuracy: >99%
- With noise, clustering algorithm applied, Accuracy: 93 -96%, depends on the size of the model (hidden dimension: 8, 16, 24, 32, ...)
 - Will keep 93%-96% hits. The performance will trade-off with the size of model (complexity).

Future Plan: sPHENIX Readout Upgrade

Al-based real-time system: Fast Data Processing and Autonomous Detector Control

- Identify heavy quark events in p+p and p+Au collision events
- Autonomous detector & beam position misalignment monitoring and correction



Conclusion, Accomplishments and Milestone

- 1. Implement the Trigger Detection Algorithm based on advanced GNN
- 2. Implement Physics-aware pipeline for decision making
- 3. Extremely fast GNN algorithm on FPGA (3KHz/second for end-to-end pipeline), 20 times faster than GPU.
- 4. With the Support of HLS4ML, the trigger software runs on a server and embedded system with FPGA
- Year 2 milestones
- Simulation Dataset with MVTX+INTP (1~5 million events) and retrained models
- FPGA implementation for new models with MVTX and INTP
- Fast prototype design for online triggering hardware
- Design and implement embedded system with both training (on GPU) and inference (on FPGA)

(Possible) Year 3 milestones:

• sPhenix trigger to be deployed for upcoming sPhenix experiment run at 2023.