

Scintillating Bolometer Crystal Growth and Purification for Neutrinoless Double Beta Decay Experiments

DOE Contract: DE-SC0015200, SBIR Phase IIA 5/28/2019 - 2/27/2022

RMD Principal Investigator: Michael R. Squillante DOE Technical Contact: Michelle D. Shinn RMD Team: Josh Tower, Huicong Hong MIT: Lindley Winslow, Joe Johnston

August 18, 2021

RMD Basic and Applied Research and Development

Materials Science

Scintillators

Semiconductors

X-ray Imaging Screens

Ceramic Lasers and IR windows

Sensors

APDs SSPMs Photosensors

Wide Band Gap Geiger Photodiodes

Surgical Beta-Probe

Instruments & Systems

HiRIS – High Resolution Imaging System

Hermes G/n w/ isotope ID

Commercial Products Based on RMD's Gamma-Neutron Scintillators

CLYC + PMT

CLLBC + SiPM

Kromek D5 RIID

FLIR R440 RIID

ANSTO CORIS360 Imager

Thermo-Scientific RadEye SPRD-GN

Thermo-Scientific RIIDEye

Low-Background Crystals for Nuclear and High-Energy Physics

Understanding the Neutrino

- A key goal of Nuclear Physics is elucidating the nature of the neutrino What are the masses of the neutrino mass eigenstates?
 Is the neutrino its own antiparticle?
- The answers to these questions can change the Standard Model of physics.
- Searching for **neutrinoless double beta decay** $(0\nu\beta\beta)$ is one of the highest priority experiments to answer these questions.
- A next generation experiment to search for 0vββ is CUPID: CUORE with Particle Identification.
 - CUPID will use Li₂MoO₄ (LMO) scintillating bolometers.

Selection of Isotopes with Double-beta decay

Candidate Isotopes for 0vββ Experiments

		end point	%
alamaart	isatana		, o a bundanca
element	Isotope	energy (iviev)	abundance
Са	48	4.271	.187
Nd	150	3.367	5.6
Zr	96	3.35	2.8
Мо	100	3.034	9.7
Se	82	2.995	8.8
Cd	116	2.802	7.5
Те	130	2.527	24.6
Xe	136	2.457	8.9
Ge	76	2.039	7.8

 100 Mo half-life = 7.8×10¹⁸ y 82 Se half-life = 0.97×10²⁰ y

Requirements for isotope

- 1. Must decay by double beta process.
- 2. Good natural abundance and ability to enrich.
- High endpoint energy (above 2.6 MeV ²³²Th gamma ray).
- 4. Major constituent in a scintillating crystal.

<u>Li₂MoO₄ Scintillating Bolometer</u>

- Is both the source and detector of $0\nu\beta\beta$
- Detects heat and light signals simultaneously.

Scintillating Bolometers are needed for better particle discrimination and background reduction

The goal is to complete the research and development needed to implement production of Li_2MoO_4 (LMO) scintillating bolometer crystals suitable for neutrinoless double-beta decay experiments.

- Synthesize and purify Li₂MoO₄ from the high purity raw materials
- Grow single-crystal ingots using Czochralski to fabricate 45 mm cube detectors
- Develop processes for shaping and polishing crystals to maintain radio-purity
- Deliver detector crystals to the CUPID Collaboration for cryogenic evaluation. Scintillating bolometer testing includes all operational characteristics, such as light output and radioactivity background.
- Grow LMO using isotope enriched ¹⁰⁰Mo and produce full-spec detectors to qualify as a supplier for the CUPID experiment.

LMO Synthesis and Purification

- Start with best purity raw materials
 - Good sources of the chemicals identified in previous phase
- MoO₃ (99.9995%) + Li₂CO₃ (99.99%) High Purity Powders
 - $MoO_3 + Li_2CO_3 \rightarrow Li_2MoO_4 + CO_2$

Greenish or brownish crystals can result if best quality materials are not used.

Optical transmission is good indication of crystal purity

Czochralski Growth of Li₂MoO₄

July 2019

~4 cm OD ~200 grams

June2021

65mm OD x 65mm 813 grams

Repeatable growth process

New CZ System for LMO

Growing crystal

Fabrication of LMO Cubes for CUPID

Diamond wire saw for cutting 45 mm cubes

Special polishing fixture built for 45 mm cubes

Final polishing and surface cleaning done in clean radon-free atmosphere using low-radioactivity materials.

Cryogenic Testing of Scintillating Bolometers

Above ground cryogenic testing by MIT at CSNSM

- Samples held at ~ 20 mK for multi-day testing.
- Light and heat pulses measured separately.

Light pulse is \sim 100x faster than heat.

Calibrated Heat Spectrum for LMO

LMO Light Channel Spectrum

Light Channel Spectrum

Alpha Particle Discrimination Power = 3.0

LMO Internal Alpha Background Limits

Alpha Contamination: Limits are 0.08 to 0.3 mBq/kg

- Comparable to the CLYMENE crystal

Alpha Contamination Limits

Chain/ Contamin ation	Nuclide	Q-Value (keV)	Counts	Limit on Activity (mBq/kg)	CLYMENE LMO-Small (mBq/kg)
Th-232	Th-232	4081.6 ± 1.4	5	<0.24	<0.5
	Th-228	5520.08 ± 0.22	8	<0.10	<0.55
U-238	U-238	4269.7 ± 2.9	9	<0.12	<0.72
	Ra-226	4870.62 ± 0.25	-	<0.21	<0.50
	Rn-222	5590.4	13	<0.21	-
	Po-218	6002.4	7	<0.08	-
	Po-210	5407.45 ± 0.07	8	<0.10	<1.7
Pt-190	Pt-190	3252 ± 6	15	<0.25	-

- · Feldman-Cousins tables are used to set 90% limits
- · Count limits are converted to activity limits with the exposure of 0.22 kg*days
- Ra-226 limit is set by assuming secular equilibrium with Rn-222
- Comparison is to CLYMENE (Exposure 0.039 kg*days)
- Accounting for different exposures, the two sets of limits are comparable (arXiv:1801.07909 [physics.ins-det])

Supply of ¹⁰⁰Mo

- The molybdenum, supplied as ¹⁰⁰MoO3 powder, will be purchased from ISOFlex in a quantity and purity sufficient for the prototype objective of the Phase IIA project
- The enriched ¹⁰⁰MoO3 is by the far the most expensive component of the LMO detectors planned for CUPID, at > \$50,000 per kg for the ¹⁰⁰Mo

Production Schedule

- 600 crystal cubes 4.5 cm on a side by 2025. We plan to begin delivering crystals to CUPID in 2022
- One Czochralski crystal puller can produce up to 100 crystals per year
- Three pullers will be needed to complete the delivery on time

We will continue follow the original plan described in the proposal.

- Provide unenriched 45 mm cube crystals to MIT/CUPID for cryogenic evaluation.
- Incorporate enriched ¹⁰⁰Mo and produce a prototype detector crystal fully suitable for CUPID.
- Finalize and document the production process.
- Prepare to produce full size crystals and transition to Phase III production to supply ~ 600 of the crystals to CUPID 2023-2025.
 - Purchase additional CZ furnaces
 - Set up manufacturing scale purification, synthesis, and fabrication facilities

