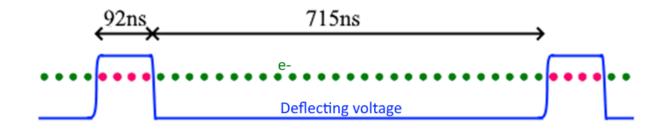
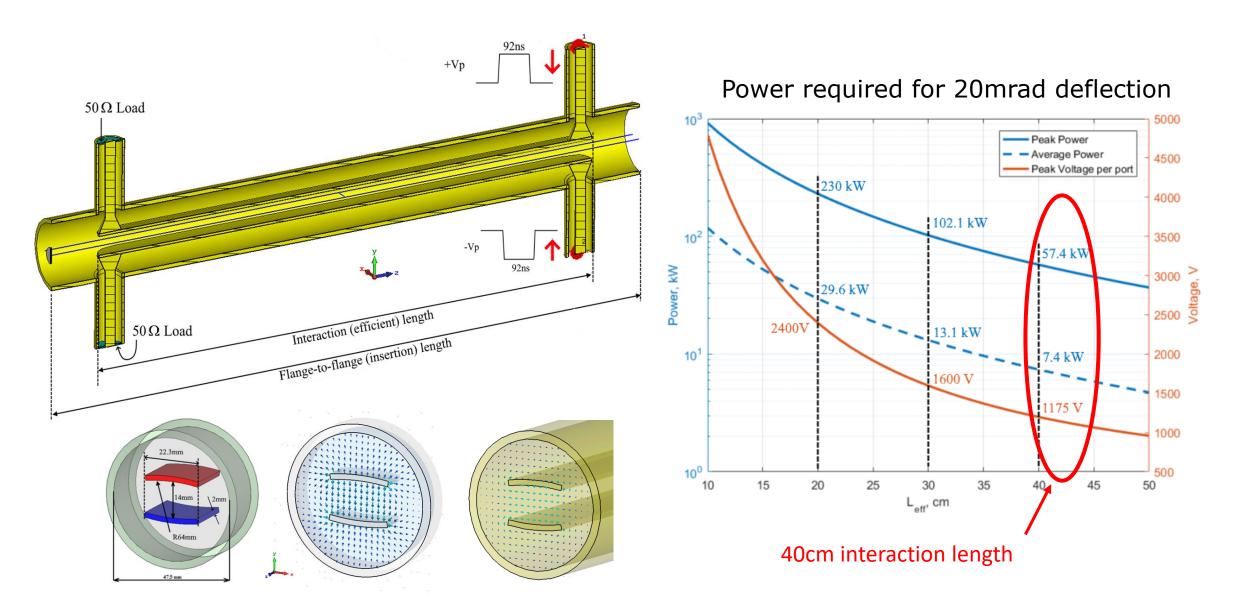

Ultrafast High Voltage Kicker System Hardware for Ion Clearing Gaps

PI: Sergey V. Kutsaev, Ph.D. Presenter: Alexander Smirnov, Ph.D. DOE SBIR Award DE-SC0019684 DOE NP SBIR/STTR Phase II PI Exchange Meeting, August 18, 2021

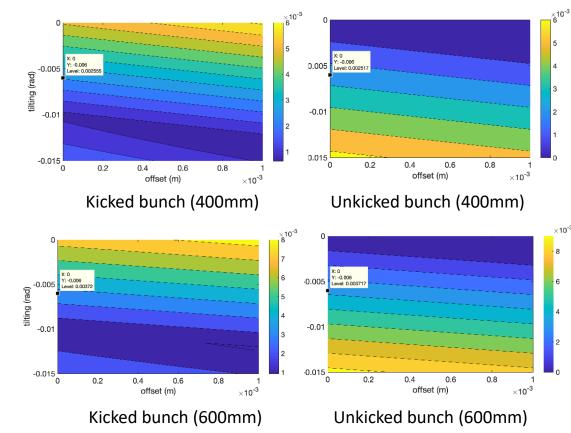


The ionization scattering of the electron beam with residual gas molecules causes ion trapping in the electron rings, both in the collider and electron cooling system. The trapped ions may cause emittance growth, tune shift, halo formation, and coherent coupled bunch instabilities. Therefore, the beam temporal structure needs gaps to clear the ions to prevent them from accumulating turn after turn. Typically, the gap in the bunch train has a length of a few percent of the ring circumference.

- A fast deflector (kicker) is needed for EIC ERL cooler to form a ~100ns gap at ~1MHz (37.5MHz, ultimately 98.5MHz microbunches)
- Aperture 14 mm
- Maximum insertion length is 75cm
- Stripline kicker is a practical solution for such need
- Radiabeam is building a kicker and twochannel pulsed power source intended to be installed and tested at Jefferson Lab



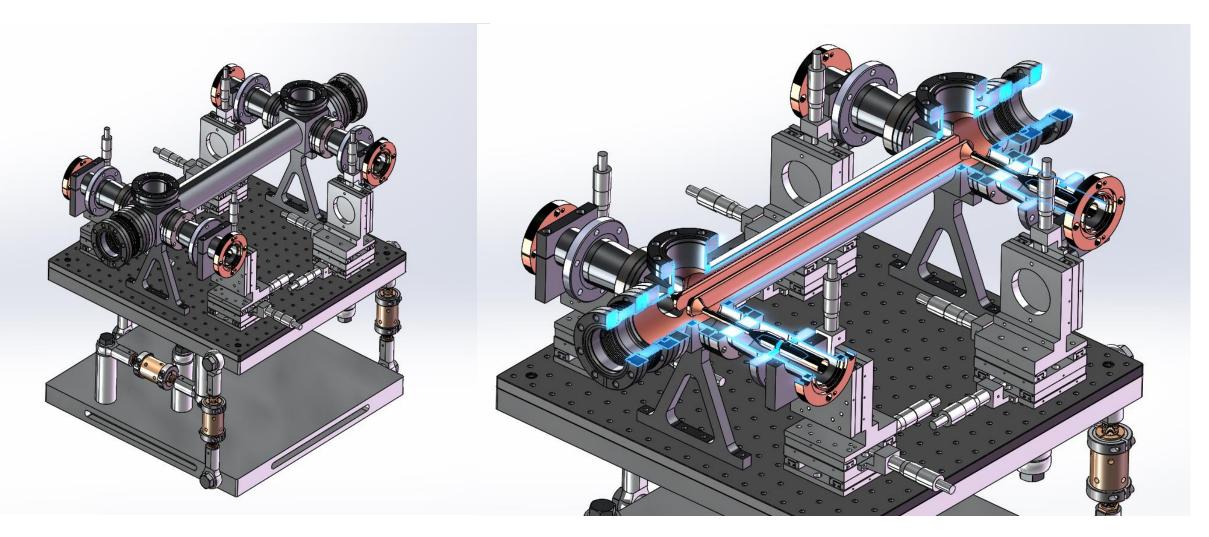
Parameter	Value			
Deflecting angle	20 mrad (deflecting voltage 140 kV)			
Flange-to-flange length	50 – 60 cm			
Electron Beam Energy	7 MeV			
Bunch Repetition Rate	37.5 MHz			
Bunch rms transverse size	σ=1 mm			
Deflecting Pulse Width	92 ns flat-top required to deflect 4 out of			
	31 bunches in train			
Kicker operation per rate	1.4 MHz (715ns between the pulses)			
Rise + Fall Time	<20 ns (10ns desired)			
Aperture (gap)	14 mm			
	27.6 kW peak power per channel (55.2 kW			
Required pulsed power	total); 3.8 kW average power per channel			
	(7.6 kW total)			


RF design

Beam dynamics study

Exit offset spectrum over injection parameters

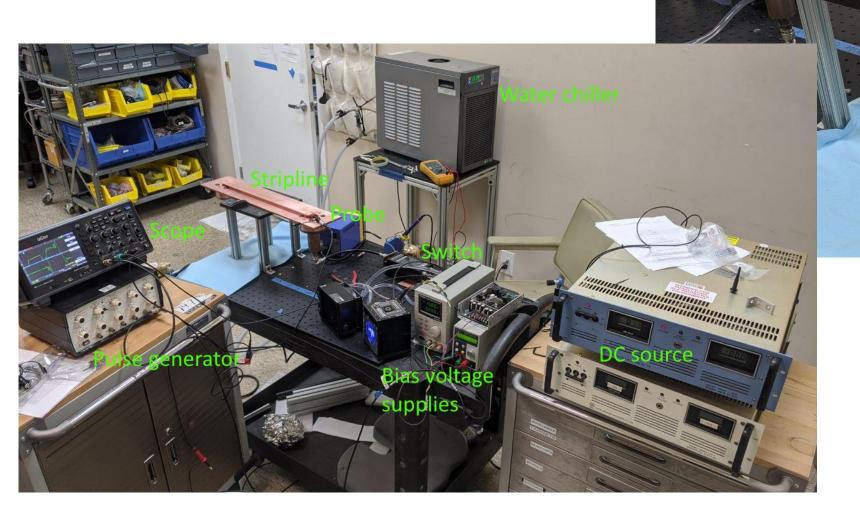
Beam loss with various interaction lengths


Analytic evaluation	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
20mrad Kick	yes	yes	yes	yes	yes	no	yes	no
$L_{\rm eff}$ (mm)	200	300	400	600	400	400	600	600
$g(\mathrm{mm})$	14	14	14	14	14	14	14	14
$V_{\rm p}\left({ m V} ight)$	2275	1560	1175	790	1175	1175	790	790
Offset _i (mm)	0	0	0	0	0	0	0	0
Tilt _i (mm)	0	0	0	0	-5	-5	-6	-6
Beam loss (%)	1×10^{-6}	8.8×10^{-5}	0.0027	0.21	5.4×10^{-5}	4.7×10^{-5}	4.6×10^{-3}	4.8×10^{-3}
$P_b(W)$ LERF	4×10^{-4}	0.04	1.1	87.3	0.022	0.02	2	2
$P_b(W)$ JLEIC	0.04	3.4	104.5	8.1×10^3	2.1	1.8	178	186
P_{RF} (kW)	14.5	6.8	3.85	1.75	3.85	3.85	1.75	1.75
CST simulation								
Beam loss (%)	7×10^{-6}	4×10^{-5}	1.6×10^{-3}	0.38	4.65×10^{-5}	4.66×10^{-5}	3.6×10^{-3}	3.6×10^{-3}
$P_b(\mathbf{W})$ LERF	0.003	0.02	0.66	158	0.02	0.02	1.5	1.5
P_b (W) JLEIC	0.27	1.55	62	$1.47 imes 10^4$	1.8	1.8	140	140
Space charge								
Beam loss (%)	-	2	4		$1.8 imes 10^{-3}$	4.7×10^{-5}	-	-
Pb (W) LERF	-	-	-	-	0.7	0.02	-	-
P_b (W) JLEIC	-	-	-	-	70	1.8	-	-

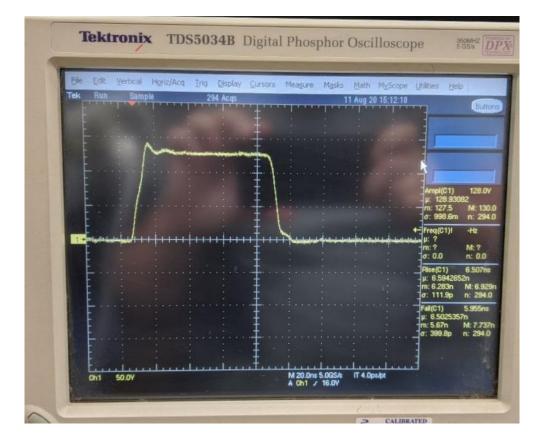
40cm interaction length

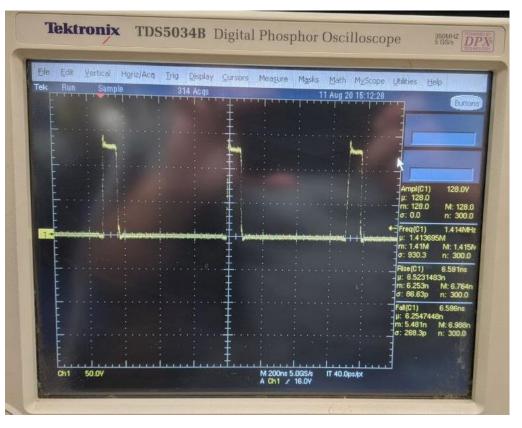
Engineering model

- Standard 1-5/8" EIA compatible
- XYZ Positioning stage



Pulser testing setup

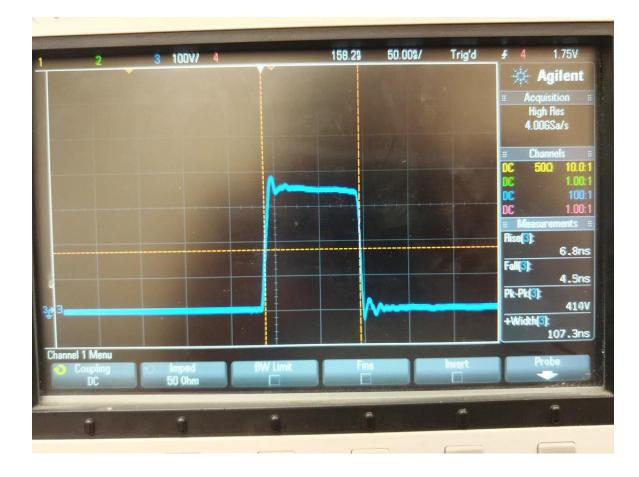

- 50cm-long 50 Ohm stripline, VSWR <1.1 from DC to 1 GHz
- Si MOSFET and GaN water-cooled high-power switches
- 500 V / 10 A DC supply



RadiaBeam

Achieved:

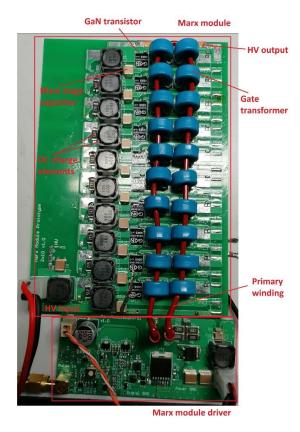
- 7ns rise and 6ns fall times at 100 ns flat-top with 87ps rms timing jitter
- Highly stable and controllable pulse length
- 1.4 MHz repetition rate
- 50% efficiency

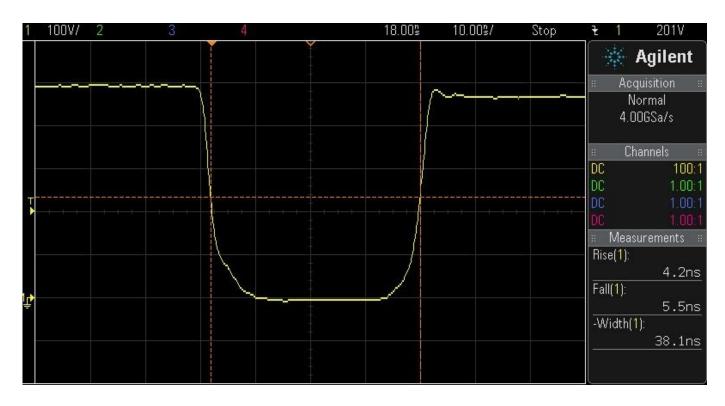


Pulser testing (Gallium Nitride)

Achieved:

- 6.8ns rise and 4.5ns fall times @ 107 ns flat-top with 100ps rms timing jitter
- Highly stable and controllable pulse length
- 1.4 MHz repetition rate
- 82% efficiency




¹⁰ RadiaBeam pulser development (GaN)

Achieved*:

- 4.2 ns rise and 5.5ns fall times @ 38 ns flat-top
- 100 Hz repetition rate
- 95% efficiency

*under Phase I project DE-SC0021548

- Tests with GaN at ~1500V/30A to achieve 1175V/23.5A pulses
- Assemble two-channel pulser
- Finalize RF and thermal study of the kicker
- Kicker fabrication, assembly and tests
- Installation and beam-based tests at JLAB