NP Instrumentation in the High Luminosity Era

Elke-Caroline Aschenauer (BNL) Co-Associate Director for the EIC Experimental Program

Jefferson Lab

Facts about the EIC What is the EIC:

A high luminosity $(10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1})$ polarized electron proton / ion collider with $\sqrt{s_{ep}} = 28 - 140 \text{ GeV}$

What is new/different:

Hera: factor 100 to 1000 higher luminosity both electrons and protons / light nuclei polarized, nuclear beams: d to U Fixed Target Facilities i.e.: at minimum > 2 decades increase in kinematic coverage in x and Q²

- Add electron beam 5 GeV to 18 GeV to RHIC hadron beams
- 25 mrad crossing angle
- both electrons and light ions (p,d,He-3) polarized
- 9 ns bunch spacing
- 2 interaction regions

2007 Developing The EIC Science Case

ELECTRON-ION COLLIDER SCIENCE

"An EIC can uniquely address three profound questions About nucleons—neutrons and protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?

What are the emergent properties of dense systems of gluons?"

2002

EIC

The EIC: A Unique Collider

collide different beam species: ep & eA

- → consequences for beam backgrounds
 - → hadron beam backgrounds,
 - i.e. beam gas events
 - → synchrotron radiation

asymmetric beam energies

- boosted kinematics
 - \rightarrow high activity at high $|\eta|$

Small bunch spacing: >= 9ns

crossing angle: 25mrad

wide range in center of mass energies→ factor 6

both beams are polarized \rightarrow stat uncertainty: ~ 1/(P_1P_2 (/L dt)^{1/2}) collide the same beam species: pp, pA, AA

- → beam backgrounds
 - → hadron beam backgrounds,
 - i.e. beam gas events, high pile up

symmetric beam energies

- \rightarrow kinematics is not boosted
 - → most activity at midrapidity

moderate bunch spacing: 25 ns

no crossing angle yet

LHC limited range in center of mass energies
→ factor 2
RHIC wide range in center of mass energies :
→ factor 26 in AA and 8 in pp

no beam polarization \rightarrow stat uncertainty: ~1/(/L dt)^{1/2}

Differences impact detector acceptance and possible detector technologies

EIC General Purpose Detector: Concept

Background/Radiation

The HERA and KEK experience show that having backgrounds under control is crucial for the EIC detector performance

- There are several background/radiation sources :
 - primary collisions
 - beam-gas induced
 - synchrotron radiation

Important to note:

- Iow multiplicity per event: < 10 tracks</p>
- > η > 2: avg. hadron track momenta @ 141 GeV: ~20 GeV

Rear Side Apertures

Dotted lines are old Solid lines are 0.5m shift

- > No pileup from collisions 500 kHz @ 10^{34} cm⁻²s⁻¹ \rightarrow coll. every 200 bunches

Synchrotron Radiation:

- Origin: quads and bending magnet upstream of IP
- Tails in electron bunches: can produce hard radiation
- Studied using Synrad3D

Background/Radiation

Primary collisions contribute a substantial fraction of the ionizing radiation and low energy neutron fluence in the experimental hall

→ forward EmCal: up to ~5*10⁹ n/cm²
 per fb⁻¹ (*inside the towers*); perhaps
 ~5 less at the SiPM location

Beam-gas interactions are one of the main sources of neutrons that thermalize within the detector hall and cause the damage.

The current FLUKA simulations show that the EIC detector will obtain annual dose of $6*10^{10}$ n/cm² (1 MeV equivalent) in the Silicon Vertex Tracker \rightarrow suggested tolerance of 10^{14} n/cm²

(IIIIII)

EIC General Purpose Detector solenoid coils

hadronic calorimeters

MAPS tracker MPG trackers

ToF, DIRC, RICH detectors

e/m calorimeters

Overall detector requirements:

- Large rapidity (-4 < η < 4) coverage; and far beyond in especially far-forward detector regions
- High precision low mass tracking
 - small (μ -vertex) and large radius (gaseous-based) tracking
- Electromagnetic and Hadronic Calorimetry
 - equal coverage of tracking and EM-calorimetry
- High performance PID to separate π , K, p on track level
 - also need good e/h separation for scattered electron
- Large acceptance for diffraction, tagging, neutrons from nuclear breakup: critical for physics program
 - Many ancillary detector integrated in the beam 0 line: low-Q² tagger, Roman Pots, Zero-Degree Calorimeter.
 - \rightarrow Integration into IR critical
 - High control of systematics

Iuminosity monitor, electron & hadron Polarimetry

EICUG: Yellow Report (YR) Initiative

The EIC Users Group: EICUG.ORG Report: https://arxiv.org/abs/2103.05419

Detector requirements and design driven by EIC Physics program and defined by EIC Community

Physics Topics \rightarrow Processes \rightarrow Detector Requirements

Physics Working Group:

Inclusive Reactions Semi-Inclusive Reactions Jets, Heavy Quarks Exclusive Reactions Diffractive Reactions & Tagging

Tracking + Vertexing Particle ID Calorimetry DAQ/Electronics Polarimetry/Ancillary Detectors Central Detector: Integration & Magnet Far- Forward Detector & IR Integration

Detector Working Group:

Provides critical input for detector proposals

Technologies based on Generic EIC Detector R&D developed by EIC-UG members https://wiki.bnl.gov/conferences/index.php/EIC_R%25D

EIC General Purpose Detector

EIC general purpose Detector around a new 3T Solenoid

Hermetic coverage:

 $2^{\rm o} < \Theta < 178^{\rm o}$ (-4<η<4) with 2π in Φ

 \rightarrow as close as possible to 4π

Most likely detector technologies further refined by current detector proposal process

https://www.bnl.gov/eic/CFC.php

system	system components	reference detectors			
	vertex	MAPS, 20 um pitch			
tracking	barrel	TPC			
uacking	forward & backward	MAPS, 20 um pitch & sTGCs ^c			
	very far forward	MAPS, 20 um pitch & AC-LGAD ^{d}			
	& far backward				
	barrel	W powder/ScFi or Pb/Sc Shashlyk			
	forward	W powder/ScFi			
ECal	backward, inner	PbWO ₄			
	backward, outer	SciGlass			
	very far forward	Si/W			
	barrel	High performance DIRC & dE/dx (TPC)			
	forward, high p	double radiator PICH (fluorecarbon cas across)			
h-PID	forward, medium p	double radiator Kierr (indolocarboit gas, actoger)			
	forward, low p	TOF			
	backward	modular RICH (aerogel)			
	barrel	hpDIRC & dE/dx (TPC)			
e/h separation	forward	TOF & areogel			
at low p	backward	modular RICH			
	barrel	Fe/Sc			
HCal	forward	Fe/Sc			
11, 21	backward	Fe/Sc			
	very far forward	quartz fibers/ scintillators			

What is new/special for a EIC GPD

Vertex detector → Identify primary and secondary vertices, Low material budget: 0.05% X/X₀ per layer; High spatial resolution: 10 µm pitch CMOS Monolithic Active Pixel Sensor (MAPS) → synergy with Alice ITS3

Central tracker → Measure charged track momenta MAPS – tracking layers in combination with micro pattern gas detectors

Forward tracker → Measure charged track momenta MAPS – disks in combination with micro pattern gas detectors

Particle Identification → pion, kaon, proton separation RICH detectors & Time-of-Flight high resolution timing detectors (, LAPPS, LGAD) 10 – 30 ps novel photon sensors: MCP-PMT / LAPPD

Electromagnetic calorimeter → Measure photons (E, angle), identify electrons Crystals (backward), Shashlik or Scintillator/Silicon-Tungsten new material development: Scintillating glass → very cost effective

Hadron calorimeter \rightarrow Measure charged hadrons, neutrons and K_L⁰ challenge achieve ~50%/ \sqrt{E} + 10% for low E hadrons (<E> ~ 20 GeV)

DAQ & Readout Electronics: trigger-less / streaming DAQ Integrate AI into DAQ → cognizant Detector

Beam pipe and very forward and backward detectors

MAPS µVertex

- For primary and secondary vertex reconstruction
- Low material budget: 0.05% X/X₀ per layer
 High spatial resolution: 10 μm pitch MAPS
 → ref. Alice ITS3

Compromise:
 20 μm (or smaller) pixels and ~0.3% X/X₀ per layer

Barrel+ Disks for endcaps

Endcaps: MPGDs

- To improve momentum resolution at large rapidities.
- Spatial resolution well below 100 μm
- Large-area detectors possible
- Cost efficient compared to silicon

Electro-Magnetic Calorimeter

Applications

- Scattered electron kinematics measurement at large $|\eta|$ in the e-endcap
- Photon detection and energy measurement
- e/h separation (via E/p & cluster topology)
- $\pi^{0/\gamma}$ separation \rightarrow may also consider a highly segmented preshower combined with ToF and tracking \rightarrow three in one
- Anticipated stochastic term in energy resolution & available space

η	[-42]	[-21]	[-1 1]	[14]
σ_E / E	~2%/√E	~7%/√E	~10-12%/√E	~10-12%/√E
space	~50 cm	~50 cm	~30 cm	~40 cm

Other considerations

- Fast timing
- Compactness (small X₀ and R_M)
- Tower granularity
- Readout immune to the magnetic field

EIC Yellow Report

	Trues		ſ	v	D	1	aa11	Х	17	~ 1	Γ 0/
#	Type	samp-	Jsamp	Λ_0	ĸм	Λ_I	cen	$\overline{X_0}$	ΔZ	v_E /	E, 70
		ling, mm		mm	mm	mm	mm ²		cm	α	β
1	W/ScFi**	⊘0.47 ScFi	2%	7.0	19	200	25^{2}	20	30	2.5	13
		W powd.									
2	PbWO ₄ ***	-	-	8.9	19.6	203	20^{2}	22.5	35	1.0	2.5
3	Shashlyk***	$0.75 \mathrm{W/Cu}^a$	16%	12.4	26	250	25 ²	20	40	1.6	8.3
		1.5 Sc									
4	W/ScFi**	0.59 ² ScFi	12%	13	28	280	25^{2}	20	43	1.7	7.1
	with PMT	W powd.									
5	Shashlyk***	0.8 Pb	20%	16.4	35	520	40^{2}	20	48	1.5	6
		1.55 Sc									
6	TF1 Pb glass***	-	-	28	37	380	40^{2}	20	71	1.0	5-6
7	Sc. glass* ^b	-	-	26	35	400	40^{2}	20	67	1.0	3-4

2018: 1cm x 1cm x 1cm

- High resolution EmCal in the electron-endcap for the scattering electron measurements
- PWO where space is tight, and the highest possible energy resolution is required
- Scintillating glass (EIC R&D) otherwise
 - More cost efficient, easier manufacturing

2019: 2cm x 2cm x 4cm

Potentially better optical properties Example: SC1 glass

E.C. Aschenauer

Crystal ID

EIC PID

needs are more demanding then your normal collider detector

EIC

needs absolute particle numbers at high purity and low contamination

Particle ID

In general, need to separate:

- \blacktriangleright Electrons from photons $\rightarrow 4\pi$ coverage in tracking
- Electrons from charged hadrons \rightarrow mostly provided by calorimetry \geq
- Charged pions, kaons and protons from each other \rightarrow Cherenkov detectors
 - Cherenkov detectors, complemented by other technologies at lower momenta

Need more than one technology to cover the entire momentum ranges at different rapidities

Physics requirements:

Rapidity	$\pi/\mathrm{K/p}$ and $\pi0/\gamma$	e/h	Min pT (E)	
-3.51.0	7 GeV/c	18 GeV/c	100 MeV/c	
-1.0 - 1.0	8-10 GeV/c	8 GeV/c	100 MeV/c	
1.0 - 3.5	50 GeV/c	20 GeV/c	100 MeV/c	

separation [s.d.]

20

- Radially compact (~ 5cm)
- high-performance DIRC with better optics and <100 ps timing (π/K up to ~6 GeV/c)
- Re-use BaBar quartz bars ?
- Integration into a 4π detector can be challenging

Dual radiator RICH

- Hadron PID in the forward/hadron end-cap
- Use a combination of aerogel and C_mF_n with indices of refraction matching EIC momentum range in the forward endcap
- Similar to LHC-b, HERMES, JLAB/Hall-B, …

Radiators: Aerogel ($|n_{AERO} \sim 1.02$) + Gas ($n_{C2F6} \sim 1.0008$)Detector: 0.5 m²/sector , 3x3 mm² pixelSingle-photon detection in ~1T magnetic fieldOutside acceptance, reduced constraints

- Continuous >3σ π/K separation up to 60
 GeV/c and K/p separation to higher momenta
- > $3\sigma e/\pi$ separation up to ~15 GeV/c

Modular-RICH (mRICH)

For hadron PID in the electron end-cap
Compact version of a conventional

aerogel-based proximity focusing RICH

New features: a) separation of optical and electronic components; b) longer focal length (6"); c) 3mm x 3mm photosensors.

2nd mRICH proto<mark>t</mark>ype was tested at Fermilab Test Beam Facility in June/July 2018

20

High resolution timing technologies

Expecting affordable detectors with <10ps timing on the EIC CD-2 time scale

Detectors can provide <20ps / layer

AC-coupled variety gives 100% fill factor and potentially a high spatial resolution (dozens of microns) with >1mm large pixels

Streaming Readout Architecture

EIC Readout Partitioning

FEB – Front-End Boards

- Custom designed for each detector and populated with ASICs.
- ASICs designed to process analog signals and digitization tailored to each type of detector technology.
- Data transport via optical fibers to minimize cabling.

FEP – Front-End Processors

- Custom designed to process and aggregate data streams from multiple FEBs.
- □ FPGAs are dominant components on these PCBs.
- □ Algorithms reduce data flow (e.g., zero suppression)
- Data transport via optical fibers to minimize cabling.

Global Timing

- □ High speed and precision combines custom designed and COTS componentry.
- Provides synchronization of and clock distribution to the readout elements.
- Jitter better than 1 ps.

Network Switches/Servers/Computing

- High performance COTS infrastructure.
- Enables further reduction of data flow prior to storage via sophisticated algorithms, e.g., ML and AI.

January 2020: CD-0 & site selection \rightarrow BNL

June 28th 2021: EIC received CD-1

Accelerator Technical Reviews	Spring Autumn 2021
Start Preliminary Design	April 2021
Detector Proposals Submitted	December 2021
Selection of Project Detector	March 2022
Start Earned Value Tracking	Summer 2022
Clarify In-kind Deliverables - Agreements	Summer/Fall 2022
Goal for CD-2 Approval	January 2023
Goal for CD-3 Approval	March 2024

Goal for CD-4 Early Project Completion

July 2031

EIC Project Status

Take Away Message

Why EIC now?

"all stars align":

- theory developments will allow to obtain the answers to the big questions discussed
- detector technologies allow for a collider detector with high resolution, wide acceptance and particle identification

BUT MOST IMPORTANTLY

- accelerator technologies allow to built a collider with
 - high luminosity
 - highly polarized electron and light hadron beams
 - a wide range in center of mass energies
 - hadron beams with highest A
 - demanding acceptance requirements can be realized in IR design

Let's get to work and built the EIC

Please join us

Tracking/Material Budget

- Vertex + central + forward / backward tracker layout (moderate momentum resolution, vertex resolution $\sim 20 \,\mu m$)
- At most 3T central solenoid field (maximize B*dl integral at high $|\eta|$)
- Low material budget
 - Minimize bremsstrahlung and conversions for primary particles
 - Improve tracking performance at large $|\eta|$ by minimizing multiple Coulomb scattering
 - Minimize the dead material in front of the high resolution e/m calorimeters

thickness for the required angular range (low angle)

E.C. Aschenauer

+/- 60 mrac

Sampling EmCal

- Well established technology
 - HERA-B, ALICE, PHENIX, PANDA, ...
- Medium energy resolution ~7..13%/ \sqrt{E}
- Compact (X₀ ~7mm or less), cost efficient Pb/Sc shashlyk

W/SciFi spacal

Scintillating Fibers embedded in a W/epoxy mix Light collection uniformity can yet be improved

Hadronic Calorimeter

- Main purpose: jet energy measurement
 - Particle Flow Algorithm usage anticipated (where HCal role is identification and energy measurements of the neutral hadrons, namely neutrons and K_L)
- In general the "conventional" hadronic calorimetry is considered per default
- Anticipated stochastic term in energy resolution & depth

η	[-41]	[-1 1]	[14]
σ_{E}/E	$\sim 50\% / \sqrt{E} + 10\%$	~100%/√E + 10%	$\sim 50\%/\sqrt{E} + 10\%$
depth	~5 λ_{I}	~5 λ_{I}	~6-7 λ _I

Other considerations

- Space!
- Interplay with EmCal in a "binary" EmCal+HCal configuration
- Tower granularity (~10 x 10 cm² suffices)
- Readout immune to the magnetic field

Fe/Sc sandwich

- HCAL in endcap
- Compact LEGO-style design
 - Can be used with a mixed Fe/Pb absorber

Fe/Sc (barrel)

- Similar as used in sPHENIX
 - Solid 32-sector steel frame, but only ~3.5 λ_{I}
 - Moderate energy resolution

Scintillator plate with embedded WLS fiber

Additional e⁻ ID

- To improve e-identification for leptonic/semi-leptonic decays.
- In addition to Calorimeters and Cherenkov detectors in the hadron-endcap considering TRD.
- GEM -TRD/Tracker :
 - e/π rejection factor ~10 for momenta between 2-100 GeV/c from a single ~15cm thick module.

Very precise Tracking segment behind dRICH:

Far forward (hadron going) region

Far-forward detectors

B0-spectrometer (5.5 < θ < 20.0 mrad)

- Warm space for detector package insert located inside a vacuum vessel to isolate from insulating vacuum.
- Higher granularity detectors needed in this area (MAPS) with layers of fast-timing detectors (LGADs)
- Shape and coverage of B0 tracker needs to be further evaluated
 Space for

Roman-Pots and Off-momentum detectors $0.0^* (10\sigma cut) < \theta < 5.0 \text{ mrad}$

- Low Pt particles Pt < 1.3 GeV</p>
- RPs: movable, integrated into the vacuum system
- Fast Timing and moderate granularity $(500 \times 500 \mu m^2)$

> AC-LGADs

$$\sigma(z) = \sqrt{\varepsilon \cdot \beta(z))}$$

EIC General Purpose Detector

EIC general purpose Detector around a new 3T Solenoid with hermetic coverage

Important to note:

- Iow multiplicity per event: < 10 tracks</p>
- > η > 2: avg. hadron track momenta @ 141 GeV: ~20 GeV
 - No pileup from collisions 500 kHz @ 10^{34} cm⁻²s⁻¹ \rightarrow coll. every 200 bunches radiation environment much less harsh than LHC

IB Requirements from Physics

	Hadron	Lepton						
Machine element free region	High Luminosity → beam elements need to be close to IP EIC: +/- 4.5 m for main detector beam elements < 1.5° in main detector volume							
Beam pipe	Low mass mater	ial i.e. Beryllium						
Integration of Detectors	Local Polarimeter	Low Q ² -tagger Acceptance: Q ² < ~0.1 GeV						
Zero Degree Calorimeter	60cm x 60cm x 2m @ ~30 m							
scattered proton/neutron acc. all energies for ep	Proton: $0.18 \text{ GeV} < p_t < 1.3 \text{ GeV}$ $0.5 < x_L < 1 (x_L = E'_p/E_{Beam})$ Neutron: $p_t < 1.3 \text{ GeV}$							
scattered proton/neutron acc. all energies for eA	Proton and Neutron: $\Theta < 6 \text{ mrad } (\sqrt{s}=50 \text{ GeV})$ $\Theta < 4 \text{ mrad } (\sqrt{s}=100 \text{ GeV})$							
Luminosity	Relative Luminosity: → Flexible spin pat 1: +-++- 2: -+-++-++-++-++-++-++-++-++-++-+++-++-++	R = L ^{++/} /L ^{+-/-+} < 10 ⁻⁴ atters for both beams 3: ++++ 4:++++						
	γ acceptance: +/- 1 mrad → $δL/L < 1%$							

most demanding

tunno

MANNE

What is needed experimentally?

experimental measurements categories to address EIC physics:

inclusive **DIS**

- measure scattered lepton
- multi-dimensional binning: x, Q²
 - → reach to lowest x, Q² impacts Interaction Region design

semi-inclusive DIS

- measure scattered lepton and hadrons in coincidence
- multi-dimensional binning: x, Q², z, p_T, Θ
 - → particle identification over entire region is critical

∫Ldt: 1 fb⁻¹

10 fb⁻¹

machine & detector requirements

exclusive processes

- measure all particles in event
- multi-dimensional binning: x, Q², t, Θ
- proton p_t: 0.2 1.3 GeV
 - → cannot be detected in main detector
 - → strong impact on Interaction Region design

10 - 100 fb⁻¹

_	Nomenclature			Tracking			El	ectrons and	Photons	π/Κ	/p PID		HCAL	Muone	
η			ciature	Min p _T	Resolution	Allowed X/X ₀	Si-Vertex	Min E	Resolutio n σ _E /E	PID	p-Range (GeV/c)	Separation	Min E	Resolution σ _E /E	Muons
-6.9 — -5.8			low-Q ² tagger		δθ/θ < 1.5%; 10 ⁻⁶ < Q ² < 10 ⁻² GeV ²										
	∣ n/A	Auxiliary													
-4.5 — -4.0	† þíð	Detectors	Instrumentation to												
-4.0 — -3.5			separate charged particles from γ											~50%/√E+6%	
-3.5 — -3.0									2%/√E+ (1-3)%						
-3.0 — -2.5					σ _p /p ~ 0.1%×p+2.0%		σ _{xy} ~30µm/p _T + 40µm		(1 0)/2						
-2.5 — -2.0			Backwards Detectors											~45%/√E+6%	
-2.0 — -1.5			Deletione		σ _p /p ~ 0.05%×p+1.0%		σ _{xy} ~30µm/p _T + 20um		7%/√E+	_	≤ 7 GeV/c				
-1.5 — -1.0							204.00		(1-3)%	π suppression					
-1.0 — -0.5										up to 1:104					
-0.5 — 0.0		Central		100 MeV π		~5% or	$\sigma_{xyz} \sim 20 \ \mu m,$	50					~500		
0.0 — 0.5		Detector	Barrel		σ _p /p ~ 0.05%×p+0.5%	less	d ₀ (z) ~ d ₀ (rφ) ~ 20/p _T GeV	MeV			≤ 10 GeV/c	≥ 3 0	MeV	~85%/√E+7%	Useful for bkg,
0.5 — 1.0				135 MeV K			μm + 5 μm				≤ 15 GeV/c				improve resolution
1.0 — 1.5									(10-12)%/		≤ 30 GeV/c				
1.5 — 2.0					σ _p /p ~ 0.05%×p+1.0%		σ _{xy} ~30μm/p _T +		√E+(1-3)%						
2.0 — 2.5			Forward Detectors				20µm			3σ e/π	≤ 50 GeV/c			~35%/√E	
2.5 — 3.0							σ _{xy} ~30μm/p⊤+ 40μm				≤ 30 GeV/c				
3.0 — 3.5					σ _p /p ~ 0.1%×p+2.0%		σ _{xy} ~30μm/p _T + 60μm				≤ 45 GeV/c				
3.5 — 4.0			Instrumentation to												
4.0 — 4.5			particles from γ												
	ţe	Auxiliary Detectors													
> 6.2			Proton Spectrometer		σ _{intrinsic} (<i>t</i>)/ t < 1%; Acceptance: 0.2< p _T <1.2 GeV/c										

((unit))

EIC-UG Yellow Report results:

Detailed subdetector simulations and technology performance evaluations tabulated

Interactive version: https://physdiv.jlab.org/DetectorMatrix
 performance difference for different magnetic fields (1.4 T vs. 3 T) were evaluated

-						Tree	kin a			Flast		•	-/	V /	ЦС			-
-B = 3'	Γ					Trac	king	T		Elect	rons and Pho	tons	π/	к/р	HC4	AL		-
η		Nomencl	ature	Resolution	Relative Momentum	Allowed X/X₀	Minimum- pT	Pointing Res.	Longitudinal Pointing Res.	Resolution σε/Ε	PID	Min E Photon	p-Range (GeV/c)	Separation	Resolution σε/Ε	Energy	Muons	
< -4.6	↓ p/A	Far Backward Detectors	<u>low-Q2 tagger</u>															
-4.6 to -4.0				Not Accessib	le													
-4.0 to -3.5					Reduced Perfo	ormance												
-3.5 to -3.0					<u>σp/p</u>					<u>1%/E ⊕</u>	<u>π</u>							
-3.0 to -2.5					<u>~0.1%×p⊕2%</u>					<u>2.5%/ve ⊕</u>	suppression	<u>20 MeV</u>						
-2.5 to -2.0			Backward				150 - 300			<u>1%</u>	up to 1:1E-4						Muons	
-2.0 to -1.5			Detector		<u>σp/p~</u> 0.02%×p⊕1%		MeV/c	<u>dca(xy) ~</u> 40/pT μm ∉ 10 μm	<u>dca(z) ~</u> 100/рТ µт ⊕ 20 µm	<u>2%/E ⊕(</u> 4- <u>8)%/VE ⊕ 2</u> 9	<u>π</u> suppression up to 1:(1E-3	<u>50 MeV</u>	<u>≤ 10 GeV/c</u>		<u>50%/VE⊕10</u> %		useful for bkg, improve	
-1.5 to -1.0	_					_					<u>- 1E-2)</u>						resolution	
-1.0 to -0.5	_							dca(xv)~	dca(z)~	2%/E ⊕(12-	π							
-0.5 to 0.0	_	Central	Barrel	<u>ap/p</u> <u>~5% or less</u>	400 MeV/c	30/pT µm €	30/pT μm ⊕ 5	14)%/VE ()	2 suppression	100 MeV	<u>≤6 GeV/c</u> <u>≥3 σ</u>	<u>≥3 σ</u>	100%/VE+10	~500MeV				
0.0 to 0.5	_	Detector			<u>~0.02%×p⊕5</u>	<u></u>			μm	3)%		up to 1:1E-2			<u>%</u>			
0.5 to 1.0	_					-												-
1.0 to 1.5					<u>σp/p</u>			<u>dca(xy) ~</u> 40/pT μm ∉	<u>dca(z) ~</u> 100/pT um ⊕									
1.5 to 2.0	_				<u>~0.02%×p⊕1</u>	}	150 - 300	<u>10 µm</u>	20 µm	<u>2%/E ⊕ (4*</u> -	3σ e/π up to							_
2.0 to 2.5	_		Forward Detectors			-	MeV/c			<u>12)%/√E ⊕</u>	15 GeV/c	<u>50 MeV</u>	<u>≤ 50 GeV/c</u>		50%/VE+10%			_
2.5 to 3.0					<u>σp/p</u> ~0.1%×p⊕2%					<u>2%</u>								
3.0 to 3.5																		_
3.5 to 4.0			Instrumentation to separate charged particles from photons		Reduced Perfo	ormance												
4.0 to 4.5	•			Not Accessib	le													
> 4.6	-1, e	Far Forward Detectors	<u>Proton</u> <u>Spectrometer</u> <u>Zero Degree</u> <u>Neutral Detection</u>	Exar	nple of	physic	es and	detecto	or techn	ology	require	ment f	or IR/	Roman	Pots ir	ı back	up	

Subdetector Technology Choices

system	system components	reference detectors	detectors, alternative options considered by the community							
	vertex	MAPS, 20 um pitch	MAPS, 10 um pitch							
tracking	barrel	TPC	TPC ^a	MAPS, 20 um pitch	MICROMEGAS ^b					
tracking	forward & backward	MAPS, 20 um pitch & sTGCs ^c	GEMs	GEMs with Cr electrodes						
	very far forward	MAPS, 20 um pitch & AC-LGAD ^d	TimePix (very far backward)							
	& far backward									
	barrel	W powder/ScFi or Pb/Sc Shashlyk	SciGlass	W/Sc Shashlyk						
	forward	W powder/ScFi	SciGlass	PbGl	Pb/Sc Shashlyk or W/Sc Shashlyk					
ECal	backward, inner	PbWO ₄	SciGlass							
	backward, outer	SciGlass	PbWO ₄	PbGl	W powder/ScFi or W/Sc Shashlyk ^e					
	very far forward	Si/W	W powder/ScFi	crystals ^f	SciGlass					
	barrel	High performance DIRC & dE/dx (TPC)	reuse of BABAR DIRC bars	fine resolution TOF						
	forward, high p	double radiator PICH (fluorecarbon gas, across)	fluorocarbon gaseous RICH	high pressure Ar RICH						
h-PID	forward, medium p	double facilator Richt (hubiocarbon gas, aeroger)	aerogel							
	forward, low p	TOF	dE/dx							
	backward	modular RICH (aerogel)	proximity focusing aerogel							
	barrel	hpDIRC & dE/dx (TPC)	very fine resolution TOF							
e/h separation	forward	TOF & areogel								
at low p	backward	modular RICH	adding TRD	Hadron Blind Detector						
	barrel	Fe/Sc	RPC/DHCAL	Pb/Sc						
HCal	forward	Fe/Sc	RPC/DHCAL	Pb/Sc						
IICal	backward	Fe/Sc	RPC/DHCAL	Pb/Sc						
	very far forward	quartz fibers/ scintillators								

^a TPC surrounded by a micro-RWELL tracker

^b set of coaxial cylindrical MICROMEGAS

^c Small-Strip Thin Gas Chamber (sTGC)

^d MAPS for B0 and off-momentum poarticles, LGAD for Roman Pots

^e also Pb/Sc Shashlyk

^f alternative options: PbWO₄, LYSO, GSO, LSO

Alternatives to primary technologies for the different subdetectors fulfilling the requirements

→ risk reduction